Catch That Cow解题报告

B - Catch That Cow
Time Limit:2000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a pointN (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points X - 1 orX + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input

Line 1: Two space-separated integers: N and K

Output

Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

Sample Input

5 17

Sample Output

4

Hint

The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.

这道题目突出一个心酸啊!!

通过BFS进行解决方案的搜索。用一个队列来储存中间数。

但是这个队列的大小很难把握,我开始以为10000算大了,显示RE错误,后来我对储存进行优化。

凡是访问过的统统不再加入队列中,已经在队列中的也不再加入队列,比结果还要大1以上的也不加入队列,果然大大减少了队列的数据,但是还是RUNTIME ERROR错误。

然后我改为100000,还是RE,最后一狠心改为1000000才不显示RE,反倒显示了Wrong Answer。我反复查看代码似乎没有问题。

原来我疏忽了一种N比K还要大的可能性。一旦N比K大的话,只有减一才能逐步到达K,所以步数就是N - K。

这是我的源代码:

//Catch That Cow
#include 
#define SIZE 1000000

long num[SIZE] = {0};
long step[SIZE] = {0};
int visited[SIZE] = {0};
long i,j;

void add(long n);

void main()
{
	long n,k;

	scanf("%d %d",&n,&k);
	num[0] = n;
	i = 0;
	j = 1;

	if (n <= k)
	{
		while (num[i % SIZE] != k)
		{
			visited[num[i % SIZE]] = 1;
			if (!(num[i % SIZE] > k + 1 || num[i % SIZE] < 0))
			{
				if (!visited[num[i % SIZE] + 1])
				{
					add(num[i % SIZE] + 1);
				}
				if (!visited[num[i % SIZE] - 1])
				{
					add(num[i % SIZE] - 1);
				}
				if (!visited[num[i % SIZE] * 2])
				{
					add(num[i % SIZE] * 2);
				}
			}
			i ++;
		}
		printf("%d\n",step[i % SIZE]);
	}
	else
	{
		printf("%d\n",n - k);
	}
}

void add(long n)
{
	num[j % SIZE] = n;
	visited[n] = 1;
	step[j % SIZE] = step[i % SIZE] + 1;
	//printf("add %d step %d\n",n,step[j % SIZE]);
	j ++;
}


你可能感兴趣的:(数据结构和算法)