这个系列是关于天津大学宋凯教授的《合成生物学导论》的学习笔记,将对合成生物学的概念、合成生物系统的设计、数学模拟与性能分析以及合成生物学基础与应用研究进行一个概括性记述与简单思考,主要目的是通过合成生物学这个前沿方向了解学科交叉融合现状与方法以及掌握工程性思路。学科交叉领域必将是未来创新型成果大量涌现的地带,我们可以以合成生物学这门前沿科学为契机,既简单了解一些生物学的相关知识,更通过这个系列的简单学习来加深对工程思想的认识,了解生物学与工程学是如何融合的。
1953年,克里克和沃森发现了DNA双螺旋结构,开始了解读生物遗传密码的第一步;2003年,人类基因组计划顺利完成,加快了生物遗传密码的解读……随着生物学与计算机科学的发展与普及,加上工程科学、数学、化学、物理学的一系列成果,生物学也开始走上了工程化与标准化的道路。顺着利用人工合成的生物系统进行工程性探索、建设、产出与落地的思路,诞生了一门新的学科——合成生物学。这个学科将使我们全面走向理解并改造遗传物质的新生物学时代,同时其强工程性、强学科交叉性的特点也将吸引更多领域的人才,诞生更多意想不到同时充满现实意义的成果。
由于是一门新兴学科,现阶段合成生物学的定义仍然处于一个多元化阶段,但我们可以通过下面这种定义做一个简单的了解:
合成生物学是指按照一定的规律和已有的知识:(1).设计和建造新的生物部件、装置和系统;(2).重新设计已有的天然生物系统 为人类的特殊目的服务。
简单来说,合成生物学是一门通过设计生物学系统来解决现实问题的学科(而不是使用以物理或化学知识为主的传统方法),同时,工程性、标准化思维和通过数学模型方法指导设计与实验也是合成生物学的关键特点与方法。
作为一门重视工程性与标准性的学科,合成生物学研究内容可以被大致分为
这些内容可能使从事计算机科学相关工作的人(或者简单的说:写过程序的人)产生共鸣——其实合成生物学就是想用生物学方法写一些对内高耦合、对外低耦合、有良好API的函数以供解决实际问题,当我们产生需求时可以像使用Python解决问题时使用庞大的资源库一样,高效的用经过整合与标准化的模块进行工作,这样的过程也使我们在面临问题时的思路更加清晰、解决问题更加高效。
从生物学的内容来看,合成生物学主要的工作可以包括
这样的研究体系对一个最终的生物系统有自底向上的贯穿,涉及到系统原型设计、运行原理、工作方法、调控方法以及系统内交流机制等等的全方面覆盖。
不同于传统生物,合成生物学结合了数学、计算机科学、工程设计等等其他学科,通过设计生物系统解决实际问题,用拓展性的方法加速人类对生物学以及生命的理解。
具体来说,包括
合成生物学的研究目标之一就是创造(对人类有益的)人工生命。合成生物学家可能将扮演“造物主”,创造出自然进化法则下从未诞生甚至不敢诞生的生命形式。这一创造过程的争论在于科学家能否扮演上帝等等一系列深层次的哲学与宗教思考。
合成生物学可以利用微生物作为工厂生产对人有益的蛋白质,同样也可以生产动植物毒素甚至细菌毒素,或者人工合成病原体(这方面技术障碍极大,现阶段难以实现)。而美国中央情报局曾就这种想法(及生物武器的未来发展)做出过评估:工程化的生物制品可能比任何人类已知的疾病都可怕。事实上,合成生物学的确有可能影响未来的军事能力。
人工合成的新物种存在非自然的功能优势,同时作为生物体也可能会因为与自然生物或环境发生作用而产生意想不到的突变或其它有害性产物。这一切都将造成极大的不确定性:人工生物体会不会发展出完全战胜自然生物体的能力?在自然选择中的绝对优势可能意味着无限增殖、彻底改变或摧毁生态系统。面对这类问题,现有的评估方法已经力不从心,评估体系急需变革。
1980年,美国最高法院曾经规定“只要一个人设计的并非时自然界已有的生物就可以申请专利”。这样的专利将带来极大的权力,在某个现实领域做出的突破(比如燃料的生物工程化生产) 背后具有垄断性的巨额财富,而这样的权力也将影响生物学界的学术健康与发展。事实上,塞莱拉公司就曾企图抢在“国际人类基因组计划”之前完成人类基因组图谱以申请专利、获取垄断地位。
合成生物学是一门新兴学科,其技术上依旧存在许多障碍,需要获得突破性进展。同时,合成生物学的前景也是未知的,其的确可能对人类造成威胁。对待这种威胁,合成生物学界已经形成合成生物学发展需要合理的道德规范、国际调控与实际行动的共识。现阶段,已有一些政府与非政府组织开始了对合成生物学的社会、安全、道德监督。应对这些问题时,我们需要有力的监督组织以及国家与世界范围内的共享平台,在合成生物学界内部也应该采取技术措施,降低合成生物在自然界可能具有的竞争力。同时,我们需要结合现实作出理性判断与调和,不应过于武断、草率的做出论断。
与此同时,在这些争论中,生物学界必须做好带头作用,避免非理性的公众争论导致的不信任阻碍合成生物学的正常发展。