- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- python数值分析
寂静丿夏夜
python数据分析numpy
python数值分析上学期上数值分析课的时候被老师要求用python写代码,最后代码加上实验报告,写了一天终于给整完了。为了让大家不在这么煎熬秃顶,我就把我之前写的代码整理一下分享给大家。python二分法解决方程:x^3±2*x-5、、、defsolve_function(x):returnx**3-2*x-5defdichotomy(left,right,eps):mid=(left+righ
- 二次和三次样条曲线的作用,生成二次和三次样条曲线的方法
kfjh
算法
为什么二次样条曲线在插值和逼近中有重要作用二次样条曲线在插值和逼近中有重要作用,主要原因如下:二次样条插值具有一些重要的性质和应用价值。例如,它能够保证拟合曲线不仅通过所有给定的数据点,而且在每段曲线连接处一阶导数相等,从而使得拟合曲线相对平滑。每段曲线是二次曲线。为什么三次样条曲线在插值和逼近中有重要作用三次样条曲线在插值和逼近中有重要作用,主要原因如下:首先,三次样条插值是一种常用的数值分析方
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 北航数值分析作业三
weixin_34214500
c/c++ui数据结构与算法
frommathimport*t_table=[0,0.2,0.4,0.6,0.8,1.0]th=0.2u_table=[0,0.4,0.8,1.2,1.6,2]uh=0.4z_table=[[-0.5,-0.34,0.14,0.94,2.06,3.5],[-0.42,-0.5,-0.26,0.3,1.18,2.38],[-0.18,-0.5,-0.5,-0.18,0.46,1.42],[0.22
- 数值分析大作业c语言版,数值分析大作业3
黄之昊
数值分析大作业c语言版
该楼层疑似违规已被系统折叠隐藏此楼查看此楼数值分析大作业3一、设计方案1.使用牛顿迭代法,对原题中给出的,,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2.对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3.从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时
- 今日小结
夜景_Y
明天有门数值分析考试,这几天一直在刷题库,刷的遍数不算多,题型也大致看了一遍。仍是有许多不会。内心很慌,但是因为今天写的很多,晚上应该歇歇脑子了。刚有室友给我分享的一套题,还没来得及看。大致看了一眼,有我没见过的题,希望明天考试顺利。图片发自App
- LeetCode刷题记——69. x 的平方根(牛顿迭代法)
JimmyGreen
题目描述:实现intsqrt(intx)函数。计算并返回x的平方根,其中x是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例1:输入:4输出:2示例2:输入:8输出:2说明:8的平方根是2.82842...,由于返回类型是整数,小数部分将被舍去。一想到平方根,我第一时间想到用2分法的方法去计算,用一个while循环来控制终止条件。但是突然想到在数值分析中学到的牛顿迭代法,
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 有限元编程经典教材推荐
suoge223
有限元编程从入门到精通matlabpythonc++c语言githubvisualstudiocode制造
有限元方法是工程学和科学计算领域中广泛应用的数值分析技术。有关有限元编程的教材通常覆盖了理论、数值方法和实际编程技能。以下是10本关于有限元编程的教材,每本书都具有其独特的优势,并为读者提供了深入理解和实践有限元方法的机会。需要的小伙伴可以私信我~1.《AFirstCourseintheFiniteElementMethod》byDarylL.Logan-理由:这本书是有限元方法领域的经典之作,适
- Python---Pycharm安装各种库(第三方库)
程序员老冉
pythonpycharm开发语言青少年编程汇编程序人生
一、前言Pycharm中,通常需要安装很多第三方库,才可以使用相应的拓展功能,这篇文档给你介绍Pycharm中的常用库,以及安装的两种方法!二、Pycharm常用库的介绍Pycharm是一款非常流行的Python集成开发环境(IDE),支持多种Python库和框架。以下是一些常用的Python库:NumPy:用于科学计算和数值分析的Python库。Pandas:用于数据分析和数据预处理的Pytho
- [NA]Lab2:求多项式函数的零点
ZJU_TEDA
数值分析数值分析
任务概述数值分析课程的第二个实验,计算一个多项式函数在给定区间[a,b]上的零点。多项式函数形如:p(x)=cnxn+cn−1xn−1+...c1x+c0裁判数据保证在给定区间内存在唯一的实数根。函数接口定义doublePolynomial_Root(intn,doublec[],doublea,doubleb,doubleEPS);其中n表示多项式的阶数,c为传入多项式的系数,a和b分别为区间的
- [计算机数值分析]牛顿法求解方程的根
Spring-_-Bear
武理四年c++数值分析牛顿迭代法迭代求方程根
Spring-_-Bear的CSDN博客导航对于方程f(x)=0f(x)=0f(x)=0设已知它的近似根xkx_{k}xk,则函数f(x)f(x)f(x)在点xkx_{k}xk附近可用一阶泰勒多项式p(x)=f(xk)+f′(xk)(x−xk)p(x)=f(x_{k})+f'(x_{k})(x-x_{k})p(x)=f(xk)+f′(xk)(x−xk)来近似,因此方程f(x)=0f(x)=0f(x
- 我们究竟读了一个什么样的大学?
田洲
在大学里,我们表面上在学习,但是根本不知道学了些什么,学了怎么用,为什么而学。我感觉现在三四流大学的教育跟现实是脱节的,很落后,学校的培养方案变了又变,可能他也不知道自己想要培养什么样的学生。像我们这样的大学,不注重学生找什么样的工作,反而格外注意研究生升学率,是不是有点本末倒置了呢?把所有的东西都寄希望于未来,那我现在在干嘛,要你这个本科是干嘛?研究生有一门公共课叫数值分析,而我们大二就学过了,
- 我的最大收获与成长
civilpy
python
经历Iamnotadesignernoracoder.I'mjustaguywithapoint-of-viewandacomputer.翻译:俺不是码畜,俺只是一条对着电脑有点想法的土木狗。笔者1982年出生,西南交通大学渣硕,目前仍在土木行业(PS:年纪大,跳不动)。2001-2005年,本科阶段学的C艹,60几分飘过。2005-2008年,研究生阶段用Ansys、Flac3D做数值分析。20
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 无法从字符串单元格获取数值:Cannot get a NUMERIC value from a STRING cell
兰觅
说明:从excel中上传数据,报如下错CannotgetaNUMERICvaluefromaSTRINGcell:无法从字符串单元格获取数值分析如下:excel单元格类型为string类型的,获取值时写的数值类型如图所示解决方式如下:1.先获取单元格string类型的数据2.然后转换为double类型图示
- Numpy使用简介
ZShiJ
数据挖掘Pythonnumpy
Numpy相关题目【Python】——Numpy初体验【Python】——NumPy基础及取值操作Numpy是基于Python的通用数值计算工具包,其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包,比如Scipy,和数值分析工具包,比如Pandas、Scikit-learn,都依赖Numpy。利用Numpy,能够高效地对一维数组、矩阵或更高维度的多维数组进行运算,性能比使用Python列
- MATLAB介绍
人间造梦工厂
MATLABMATLAB
MATLAB是MATrixLABoratory即矩阵实验室的缩写,是由美国MathWorks公司开发的专业工程与科学计算软件,是一个集科学计算、数值分析、矩阵计算、数据可视化及交互式程序设计于一体的计算环境,形成一个易于使用的视窗环境。MATLAB执行由MATLAB语言编写的程序,同时提供丰富的预定义函数库,可以简化编程过程,提高编程效率。MATLAB有很多自带的功能强大的工具,如:各类工具箱编辑
- 【数值分析】最小二乘,最佳一致逼近
你哥同学
数值分析matlab最小二乘最佳一致逼近
最小二乘用于不知道f(x){f(x)}f(x)的时候,[a,b]{[a,b]}[a,b]只有一堆点。x1∣x2∣x3∣⋯∣xn∣−−−−−−−−−−f(x1)∣f(x2)∣f(x3)∣⋯∣f(xn)∣\begin{array}{cccccc}x_1&|&x_2&|&x_3&|&\cdots&|&x_n&|\\-&-&-&-&-&-&-&-&-&-\\f(x_1)&|&f(x_2)&|&f(x_3)
- 【数值分析】数值微分
你哥同学
数值分析matlab数值微分
1.基于Taylor公式的数值微分公式f′(x)≈f(x+h)−f(x)h , 截断误差 −f′′(ξ)2hf'(x)\approx\frac{f(x+h)-f(x)}{h}\,\,,\,\,截断误差\,\,\,-\frac{f''(\xi)}{2}hf′(x)≈hf(x+h)−f(x),截断误差−2f′′(ξ)hf′(x)≈f(x)−f(x−h)h , 截断误差 −f′′(ξ)2
- 【数值分析】区间折半法,matlab实现
你哥同学
数值分析matlab区间折半法数值分析
区间折半法从梯形公式出发,上一步步长为h{h}h,则有步长折半后的积分T2n=12Tn+h2∑i=0n−1f(xi+0.5)T_{2n}=\frac{1}{2}T_n+\frac{h}{2}\sum_{i=0}^{n-1}f(x_{i+0.5})T2n=21Tn+2hi=0∑n−1f(xi+0.5)matlab实现%%区间折半法例子formatlong[Ii]=halfStep(@f,0,1,1e
- 【数值分析】最佳平方逼近,最佳逼近
你哥同学
数值分析数值分析最佳逼近
最佳平方逼近∑k=0nWk(f(xk)−ϕ(xk))2=min\sum_{k=0}^{n}W_k(f(x_k)-\phi(x_k))^2=\mink=0∑nWk(f(xk)−ϕ(xk))2=min→节点非常多时∫abρ(x)(f(x)−ϕ(x))2dx=min\xrightarrow[]{\text{节点非常多时}}\int_a^b\rho(x)(f(x)-\phi(x))^2\mathrmd
- 【数值分析】逼近,正交多项式
你哥同学
数值分析线性代数数值分析逼近
逼近由离散点(函数表)给出函数关系通常有两种方法:使用多项式插值使用多项式插值会带来两个问题:1.龙格现象2.数值本身带有误差,使用插值条件来确定函数关系不合理三次样条插值三次样条插值克服了龙格现象,但计算量大。曲线拟合的最小二乘法可以克服龙格现象,同时不会有大计算量。用函数序列pn(x){p_n(x)}pn(x)去近似一个函数f(x){f(x)}f(x),称为逼近。用函数Φ{\Phi}Φ去近似一
- Anaconda下载安装与使用
ZShiJ
Python数据挖掘pythonjupyteranaconda
前言Pandas之所以被称为工具包,原因是Pandas这个工具是由不同的代码模块组成的。每一个代码模块的功能不同,合在一起构成Pandas的丰富功能。其他工具包亦然。名称描述NumpyNumpy是通用的数值计算工具包,包含大量数学计算函数和矩阵运算函数。多数科学计算工具包和数值分析工具包依赖Numpy。PandasPandas是基于Numpy构建的、开源的Python数据分析工具包,依赖高效的数据
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后