Anaconda是专注于数据分析的Python发行版本,包含了conda、Python等190多个科学包及其依赖项。作为好奇宝宝的你是不是发现了一个新名词 conda,那么你一定会问 conda 又是什么呢?
conda 是开源包(packages)和虚拟环境(environment)的管理系统。
知道 是什么(what) 的同时,我们也需要问一问 为什么(why)。那么,为什么要选择用Anaconda呢?
Anaconda的优点总结起来就八个字:省时省心、分析利器。
解决了 是什么 以及 为什么 的问题后,下面让我们看一下 怎么做(How)。
可以从这里下载 Anaconda 的安装程序以及查看安装说明。
根据提示进行安装,完成后你大概会惊讶地发现电脑中多了好多应用,不用担心,我们一项项来看:
- Anaconda Navigtor :用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。
- Jupyter notebook :基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
- qtconsole :一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。
- spyder :一个使用Python语言、跨平台的、科学运算集成开发环境。
安装完成后,我们还需要对所有工具包进行升级,以避免可能发生的错误。打开你电脑的终端,在命令行中输入:
1
|
conda
upgrade
--
all
|
在终端询问是否安装如下升级版本时,输入 y
。
有的情况下,你可能会遇到找不到 conda 命令的错误提示,这很可能是环境路径设置的问题,需要添加conda环境变量:export PATH=xxx/anaconda/bin:$PATH
, 其中xxx替换成anaconda的安装路径。
至此,安装完成,下面让我们看一下如何用 Anaconda 管理工具包和环境。
安装一个 package:
1
|
conda
install
package_name
|
这里 package_name 是需要安装包的名称。你也可以同时安装多个包,比如同时安装numpy 、scipy 和 pandas,则执行如下命令:
1
|
conda
install
numpy
scipy
pandas
|
你也可以指定安装的版本,比如安装 1.1 版本的 numpy :
1
|
conda
install
numpy
=
1.10
|
移除一个 package:
1
|
conda
remove
package_name
|
升级 package 版本:
1
|
conda
update
package_name
|
查看所有的 packages:
1
|
conda
list
|
如果你记不清 package 的具体名称,也可以进行模糊查询:
1
|
conda
search
search_term
|
默认的环境是 root,你也可以创建一个新环境:
1
|
conda
create
-
n
env_name
list
of
packages
|
其中 -n
代表 name,env_name
是需要创建的环境名称,list of packages
则是列出在新环境中需要安装的工具包。
例如,当我安装了 Python3 版本的 Anaconda 后,默认的 root 环境自然是 Python3,但是我还需要创建一个 Python 2 的环境来运行旧版本的 Python 代码,最好还安装了 pandas 包,于是我们运行以下命令来创建:
1
|
conda
create
-
n
py2
python
=
2.7
pandas
|
细心的你一定会发现,py2 环境中不仅安装了 pandas,还安装了 numpy 等一系列 packages,这就是使用 conda 的方便之处,它会自动为你安装相应的依赖包,而不需要你一个个手动安装。
进入名为 env_name 的环境:
1
|
source
activate
env_name
|
退出当前环境:
1
|
source
deactivate
|
另外注意,在 Windows 系统中,使用 activate env_name
和 deactivate
来进入和退出某个环境。
删除名为 env_name 的环境:
1
|
conda
env
remove
-
n
env_name
|
显示所有的环境:
1
|
conda
env
list
|
当分享代码的时候,同时也需要将运行环境分享给大家,执行如下命令可以将当前环境下的 package 信息存入名为 environment 的 YAML 文件中。
1
|
conda
env
export
>
environment
.
yaml
|
同样,当执行他人的代码时,也需要配置相应的环境。这时你可以用对方分享的 YAML 文件来创建一摸一样的运行环境。
1
|
conda
env
create
-
f
environment
.
yaml
|