Filter visualization

这一节参考http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb,主要介绍如何显示每一层的参数及输出,这一部分非常重要,因为在深度学习中我们关注的就是它学习出来的到底是什么东西

1、导入相关模块以及设置画图参数

复制代码
import numpy as np
import matplotlib.pyplot as plt

# Make sure that caffe is on the python path:
caffe_root = '../'  # this file is expected to be in {caffe_root}/examples,建议使用绝对路径
import sys
sys.path.insert(0, caffe_root + 'python')

import caffe

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
复制代码

2、获取分类器并设定相关参数

 通过下面命令获取训练模型

 ./scripts/download_model_binary.py models/bvlc_reference_caffenet
复制代码
caffe.set_phase_test()
caffe.set_mode_cpu()
net = caffe.Classifier(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',
                       caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')
# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
net.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'))  # ImageNet mean
net.set_raw_scale('data', 255)  # 像素值范围[0,255]
net.set_channel_swap('data', (2,1,0))  # 训练模型是BGR而不是RGB,所以将测试图片转为BGR格式 
复制代码

3、预测

scores = net.predict([caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')])

4、每一层的特征及大小

[(k, v.data.shape) for k, v in net.blobs.items()]
复制代码
[('data', (10, 3, 227, 227)),
 ('conv1', (10, 96, 55, 55)),
 ('pool1', (10, 96, 27, 27)),
 ('norm1', (10, 96, 27, 27)),
 ('conv2', (10, 256, 27, 27)),
 ('pool2', (10, 256, 13, 13)),
 ('norm2', (10, 256, 13, 13)),
 ('conv3', (10, 384, 13, 13)),
 ('conv4', (10, 384, 13, 13)),
 ('conv5', (10, 256, 13, 13)),
 ('pool5', (10, 256, 6, 6)),
 ('fc6', (10, 4096, 1, 1)),
 ('fc7', (10, 4096, 1, 1)),
 ('fc8', (10, 1000, 1, 1)),
 ('prob', (10, 1000, 1, 1))]
复制代码

以('data', (10, 3, 227, 227))为例,‘data'表示层的名字,10表示批处理数据大小,3表示特征图的个数,227,227分别表示特征图的大小

5、每层参数及大小

[(k, v[0].data.shape) for k, v in net.params.items()]
复制代码
[('conv1', (96, 3, 11, 11)),
 ('conv2', (256, 48, 5, 5)),
 ('conv3', (384, 256, 3, 3)),
 ('conv4', (384, 192, 3, 3)),
 ('conv5', (256, 192, 3, 3)),
 ('fc6', (1, 1, 4096, 9216)),
 ('fc7', (1, 1, 4096, 4096)),
 ('fc8', (1, 1, 1000, 4096))]
复制代码

以('conv1', (96, 3, 11, 11)为例,’conv1'表示层名,96表示滤波器个数,(3,11,11)表示滤波器大小,3为上一层feature map的个数,conv1的上一层是输入为RGB三个通道,因为feature map的个数为3。但对于('conv2', (256, 48, 5, 5)),上一层为 ('norm1', (10, 96, 27, 27)) feature map的个数为96,而48是92/2 , 所以不太清楚是怎么实现的,猜测是第二个卷积层只从norm1层中选择一半进行卷积,可能得去具体研究一下模型了。

6、辅助函数:绘制特征图

复制代码
def vis_square(data, padsize=1, padval=0):
    data -= data.min()
    data /= data.max()
    
    # force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
    
    # tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    plt.figure() #新的绘图区
    plt.imshow(data)
复制代码

8、显示输入图

plt.imshow(net.deprocess('data', net.blobs['data'].data[4]))

9、"conv1"权重图

filters = net.params['conv1'][0].data  
vis_square(filters.transpose(0, 2, 3, 1)) # RGB转GBR

可以看到是彩色图,因为每个滤波器有三个通道(3,10,10),总共96个。可以看到每个滤波器学到的是特征明显的边缘

10、显示”conv1"输出

feat = net.blobs['conv1'].data[4, :36]
vis_square(feat, padval=1)

“conv1"的输出有256个feature map,这里只显示前36个,当然你也可以选择全部显示

12、可视化”conv2"的权重,“conv2"包含256个大小为 5*5*48的滤波器,这里只显示一部分

48**48 即 48*48。其实要观察第二层到底学习到什么特征,需要考虑第一层的权重,因为这是一个级联的过程,现在有一部分人已经做了这方面的工作了。

filters = net.params['conv2'][0].data
vis_square(filters[:48].reshape(48**2, 5, 5))

12、可视化”conv2"层的输出,即feature map

feat = net.blobs['conv2'].data[4, :36]
vis_square(feat, padval=1)

13、“conv3"层的feature map

feat = net.blobs['conv3'].data[4]
vis_square(feat, padval=0.5)

14、”conv4"层feature map

feat = net.blobs['conv4'].data[4]
vis_square(feat, padval=0.5)

同理可以观察你想输出的任意层的feature map

16、接下来看一下pooling层的影响 

下面是分别是"conv5" "pool5"的输出,可以看出通过pooling层后,每一个feature map的可区分性更强了,这正是分类模型所期望的

17、”fc6" "fc7"是两个全连接层,输出大小为4096*1,”fc6"层的分布比较均匀区分性比较弱,而通过“fc7"层各输出之间的可区分性增强

18、“prob"层即预测层,预测该样本属于每一类的概率,ImageNet数据库有1000类,那么该层输出为1000*1

19、输出top 5的分类 

复制代码
# load labels
imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
try:
    labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')
except:
    !../data/ilsvrc12/get_ilsvrc_aux.sh
    labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

# sort top k predictions from softmax output
top_k = net.blobs['prob'].data[4].flatten().argsort()[-1:-6:-1]
print labels[top_k]
复制代码
['n02123045 tabby, tabby cat' 'n02123159 tiger cat'
 'n02124075 Egyptian cat' 'n02119022 red fox, Vulpes vulpes'
 'n02127052 lynx, catamount']

你可能感兴趣的:(深度学习)