- 【图像去噪】实用小技巧 | 使用matlab将.mat格式的图像转成.png格式的图像,适用于DnD数据集的转换,附DND图像形式的数据集
十小大
matlab计算机视觉图像去噪人工智能深度学习数据集图像处理
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)图像形式的DND数据集(.png格式)下载链接见本文底部,订阅专栏免费获取!文章目录前言DnD数据集介绍matlab将.mat转成.png尝试制作Ground-truth图像形式
- 图片修复去除重影导致的图像模糊
littlebird001
计算机视觉
有些图片由于焦距不准或镜头晃动通常会导致多重影模糊现象,如下图。这种模糊也叫运动型模糊,在计算机视觉中属于破损数据的一种是可以纠正修复的。传统工具PS是很难处理这类问题的,人工修复更是无法下手,需要对破损图像像素级重建。图像重建(imagerestoration)是去除错误像素建立正确像素的过程,是图像逆过程。通常可以解决去模糊、去噪音、补画等图像修复问题。我们使用去模糊算法解决重影模糊问题,进入
- 1-19 平滑处理——双边滤波 opencv树莓派4B 入门系列笔记
Sisphusssss
树莓派opencv笔记人工智能计算机视觉算法
目录一、提前准备二、代码详解cv2.bilateralFilter函数用于对图像进行双边滤波。双边滤波是一种保持边缘的平滑技术,常用于图像去噪声和增强图像的细节。函数的四个参数如下:三、运行现象四、完整工程贴出一、提前准备1、树莓派4B及64位系统2、提前安装opencv库以及numpy库3、保存一张图片二、代码详解importcv2#读取图像img=cv2.imread('/home/raspb
- 深度学习-OpenCv的运用(4)
红米煮粥
深度学习opencv人工智能
文章目录一、图像形态学二、图像形态学的基本概念三、形态学操作的主要类型四、代码实现1.图像腐蚀2.图像膨胀3.开运算-先腐蚀后膨胀4.闭运算-先膨胀后腐蚀5.梯度运算6.顶帽与黑帽五、总结一、图像形态学图像形态学是数学中研究形状、结构和变换的一个分支,在图像处理领域,它主要用于描述和分析图像中的形状和结构。图像形态学通过操作图像中的形状和结构元素(也称为内核或模板),来实现图像的分析、增强、去噪和
- Python(TensorFlow)和Java及C++受激发射损耗导图
亚图跨际
Python交叉知识算法去噪预测算法聚焦荧光团伪影消除算法囊泡动力学自动化多尺度统计物距
要点神经网络监督去噪预测算法聚焦荧光团和检测模拟平台伪影消除算法性能优化方法自动化多尺度囊泡动力学成像生物研究多维分析统计物距粒子概率算法Python和MATLAB图像降噪算法消除噪声的一种方法是将原始图像与表示低通滤波器或平滑操作的掩模进行卷积。例如,高斯掩模包含由高斯函数确定的元素。这种卷积使每个像素的值与其相邻像素的值更加协调。一般来说,平滑滤波器将每个像素设置为其自身及其附近相邻像素的平均
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- 图像去噪技术:自适应均值滤波器(ACmF)
潦草通信狗
均值算法算法人工智能图像处理信息与通信matlab
在图像处理领域,噪声是影响图像质量和视觉感知的主要因素之一。椒盐噪声是一种常见的噪声类型,它随机地将像素值改变为最小值或最大值,严重影响图像的视觉效果。为了解决这一问题,我们开发了一种自适应均值滤波器(ACmF),它能够有效地去除椒盐噪声,同时保留图像的重要细节。一、ACmF算法简介ACmF算法是一种基于局部像素值的自适应去噪方法。它通过分析图像的局部区域,对噪声像素进行智能处理,以恢复图像的原始
- 基于自适应中值滤波器的图像去噪处理
潦草通信狗
计算机视觉图像处理opencv信息与通信matlab
在图像处理中,噪声是一种常见的干扰因素,其中椒盐噪声(SaltandPepperNoise)是一种典型的噪声类型,表现为图像中的随机黑白点。为了消除这种噪声,我们通常使用滤波器进行去噪处理。而自适应中值滤波器(AdaptiveMedianFilter)是一种非常有效的去噪工具。本文将通过MATLAB代码示例来展示如何使用自适应中值滤波器对图像进行去噪处理。1.导入图像并添加椒盐噪声首先,我们读取一
- 利用全核范数去噪技术优化彩色图像处理
潦草通信狗
人工智能深度学习
一、引言图像去噪是图像处理领域中一个经典且重要的问题。随着技术的发展,各种算法不断涌现,其中全变分(TotalVariation,TV)方法因其在边缘保持方面的优势而广受欢迎。本文将介绍一种基于全核范数(TotalNuclearNorm,TNN)的去噪技术,该技术在处理彩色图像时表现出色。二、算法原理全核范数去噪技术基于全变分理论,通过最小化包含数据保真项和正则项的目标函数来实现去噪。数据保真项确
- 基于语言的三种图像简单去噪算法:高效C++实现
m0_57781768
C语言(C++)算法研究和解读算法c++计算机视觉
基于语言的三种图像简单去噪算法:高效C++实现图像处理在现代计算机视觉中占有重要地位,而去噪处理则是图像处理的重要环节之一。本文将介绍三种基于语言的简单图像去噪算法,并提供详细的C++实现。我们将重点介绍均值滤波、中值滤波和高斯滤波三种方法,并探讨它们在图像去噪中的应用和效果。引言在数字图像处理中,噪声是不可避免的。它可能是由传感器噪声、传输错误或压缩伪影引起的。去噪的目的是在保留图像重要特征的同
- 如何在3D无序抓取中应用深度学习算法?
道亦无名
人工智能3d深度学习算法
在3D无序抓取中,深度学习算法的应用极大地提升了系统的识别精度和效率。以下是深度学习算法在3D无序抓取中的具体应用方式:一、物体识别图像预处理:首先,通过3D相机获取的点云数据或深度图像需要进行预处理,包括去噪、滤波、分割等步骤,以提高后续处理的准确性。特征提取:利用深度学习算法(如卷积神经网络CNN)对预处理后的图像进行特征提取。这些特征可以是物体的形状、纹理、边缘等,有助于区分不同的物体。分类
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- MATLAB图像去噪和边缘检测
柯咪侠
笔记matlab图像处理
本文涉及分别使用均值滤波器和中值滤波器来除去高斯噪声、椒盐噪声以及sobel边缘检测。程序://a=imread('C:\图片\dog.jpg');I=rgb2gray(a);%将彩色图变成灰色图subplot(3,3,1);imshow(I);xlabel('原始图像');b=imnoise(I,'salt&pepper',0.01);%添加椒盐噪声subplot(3,3,2<
- 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解
天天Matlab代码科研顾问
预测模型matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍信号处理是现代科学技术中的重要组成部分,而信号去噪作为信号处理的一个重要分支,在许多领域中都有着广泛的
- YOLOv8独家原创改进:图像去噪 |一种新颖的双分支残差注意,助力低光照、红外小目标检测 | 2024年最新发表(全网独家首发)
AI小怪兽
YOLOv8原创自研YOLO目标检测人工智能计算机视觉开发语言深度学习
解决什么问题:许多网络不能很好地去除图像采集或传输过程中产生的真实噪声(即空间变异噪声),这严重阻碍了它们在实际图像去噪任务中的应用。创新点:提出了一种新的双分支残差注意网络用于图像去噪,它具有广泛的模型架构和注意引导特征学习的优点。该模型包含两个不同的并行分支,可以捕获互补特征,增强模型的学习能力。我们分别设计了一种新的残差注意力(RAB)和一种新的混合型扩张型残差注意力(HDRAB)。如何跟Y
- Stable Diffusion算法、结构全流程概述
lanlinbuaa
stablediffusionpython
StableDiffusion能力强、功能多、插件广,本文拟概述SD的全流程,方便梳理算法各结构的关系SD发展的重点论文DenoisingDiffusionProbabilisticModels(首次提出去噪扩散模型DDPM)DiffusionModelsBeatGANsonImageSynthesis(OpenAI改进UNet,DM超越GAN,ClassifierGuidance)High-Re
- 基于卷积神经网络的图像去噪
神经网络机器学习智能算法画图绘图
cnn人工智能神经网络卷积神经网络图像去噪
目录背影卷积神经网络CNN的原理卷积神经网络CNN的定义卷积神经网络CNN的神经元卷积神经网络CNN的激活函数卷积神经网络CNN的传递函数基于卷积神经网络的图像去噪完整代码:基于卷积神经网络的图像去噪.rar资源-CSDN文库https://download.csdn.net/download/abc991835105/88869565基本结构主要参数MATALB代码结果图展望背影卷积神经网络是为
- ubuntu22.04@laptop OpenCV Get Started: 011_edge_detection
lida2003
Linuxopencvedge人工智能计算机视觉
ubuntu22.04@laptopOpenCVGetStarted:011_edge_detection1.源由2.edge_detection应用Demo2.1C++应用Demo2.2Python应用Demo3.重点逐步分析3.1GaussianBlur去噪3.2Sobel边缘检测3.2.1`Sobel`X方向边缘检测3.2.2`Sobel`Y方向边缘检测3.2.3`Sobel`XY方向边缘检
- 中科星图——影像卷积核函数Kernel之gaussian高斯核函数核算子、Laplacian4核算子和square核算子等的分析
此星光明
中科星图计算机视觉人工智能深度学习核函数高斯卷积云计算
简介高斯核函数是图像处理中常用的一种卷积核函数。它是一种线性滤波器,可以实现图像的平滑处理。在图像处理中,高斯核函数的卷积操作可以用于去噪、平滑和模糊等任务。高斯核函数的定义可以表示为一个二维高斯分布函数,表达式如下:G(x,y)=(1/(2*pi*sigma^2))*exp(-(x^2+y^2)/(2*sigma^2))其中,x和y表示图像中的像素位置,sigma表示高斯分布的标准差。高斯核函数
- OpenAI Sora视频模型技术原理报告解读
AI周红伟
人工智能sora技术原理Sora技术原理
▌01.OpenAISora视频生成模型技术报告总结•不管是在视频的保真度、长度、稳定性、一致性、分辨率、文字理解等方面。•技术细节写得比较泛(防止别人模仿)大概就是用视觉块编码(visualpatch)的方式,把不同格式的视频统一编码成了用transformer架构能够训练的embeding,然后引入类似diffusion的unet的方式做在降维和升维的过程中做加噪和去噪,然后把模型做得足够大,
- 扩散模型的发展过程梳理 多个扩散模型理论知识总结/DDPM去噪扩散概率/IDDPM/DDIM隐式去噪/ADM/SMLD分数扩散/CGD条件扩散/Stable Diffusion稳定扩散/LM
不学能干嘛
stablediffusion
前言1.最近发现自己光探索SDWebUI功能搞了快两个月,但是没有理论基础后面科研路有点难走,所以在师兄的建议下,开始看b站视频学习一下扩散模型,好的一看一个不吱声,一周过去了写个博客总结一下吧,理理思路。不保证下面的内容完全正确,只能说是一个菜鸟的思考和理解,有大佬有正确的理解非常欢迎评论告知,不要骂我不要骂我。2.这里推荐up主,deep_thoughts投稿视频-deep_thoughts视
- 草图三维模型生成论文阅读整理
fisherisfish
论文阅读
论文终于接收啦!给草图研究做个收尾就去投实习!仅为个人整理,如有错误,欢迎指出!因为想给论文找创新点,所以需要大量阅读论文,部分论文会精读到实现的步骤,部分论文就记录一下思路。目前基于大模型和深度学习的三维重建任务可以简单分类为text23D,也就是文本控制转三维模型,一般使用语言模型提取文本的特征,然后去噪概率扩散模型生成多视角图像,最后再用NeRF进行三维重建,例如Dreamfusion、Ma
- FPGA转行ISP的探索之二:技术路线和概念
徐丹FPGA之路
FPGA异构计算算法fpga开发接口隔离原则算法
ISP领域的概念1相机方面的概念1)DENOISE,图像去噪图像噪声按噪声与信号的关系可分为加性噪声和乘性噪声;按照产生原因可分为外部噪声和内部噪声;按照统计特性可分为平稳噪声和非平稳噪声;平稳噪声基于统计后的概率密度函数又可以分为:高斯噪声、泊松噪声、脉冲噪声、瑞利噪声。图像去噪的算法一般是滤波,比如空域滤波,变换域滤波,机器学习方法等,经常是用OpenCV的代码来写。2)CONTRAST,对比
- OpenAI视频生成模型Sora背后的技术及其深远的影响
知来者逆
SoraSora文字生成视频视频生成OpenAI
前言Sora的视频生成技术在保真度、长度、稳定性、一致性、分辨率和文字理解等方面都达到了当前最优水平。其核心技术包括使用视觉块编码将不同格式的视频统一编码成Transformer可训练的嵌入向量,以及类似于扩散过程的UNet方法进行降维和升维的加噪与去噪操作。通过构建足够大的模型,使其具备了智能的涌现能力,例如在一定程度上理解真实世界的物理影响和因果关系。与其他视频生成模型不同,OpenAI采用了
- 扩散模型原理+DDPM案例代码解析
Mikey@Li
机器学习人工智能深度学习
扩散模型原理+代码解析一、数学基础1.1一般的条件概率形式1.2马尔可夫链条件概率形式1.3先验概率和后验概率1.4重参数化技巧1.5KL散度公式二、扩散模型的整体逻辑(以DDPM为例)2.1Diffusion扩散过程(Forward加噪过程)2.2逆向过程(reverse去噪过程)三、训练过程和采样过程3.1训练过程3.2采样过程3.3模型训练的一些细节3.3.1网络的选择3.3.2一些超参数的
- (2024,L-DAE,去噪 DM,去噪 AE,影响 SSRL 性能的关键成分,PCA 潜在空间)解构自监督学习的去噪扩散模型
EDPJ
人工智能
DeconstructingDenoisingDiffusionModelsforSelf-SupervisedLearning公和众和号:EDPJ(进Q交流群:922230617或加VX:CV_EDPJ进V交流群)目录0.摘要4.解构去噪扩散模型4.1.用于自监督学习的重新导向DDM4.2.解构分词器4.3.迈向经典去噪自动编码器5.分析和对比6.结论0.摘要在这项研究中,我们研究了去噪扩散模型
- 为自监督学习重构去噪扩散模型
tzc_fly
生成式AI学习人工智能
在这项研究中,作者检验了最初用于图像生成的去噪扩散模型(DDM)的表示学习能力。其理念是解构DDM,逐渐将其转化为经典的去噪自动编码器(DAE)。这一解构过程让大家能够探索现代DDM的各个组成部分如何影响自监督的表征。观察到,只有极少数现代组件对学习好的表征至关重要,而其他许多组件则不重要。研究最终得出了一种高度简化的方法,在很大程度上类似于经典的DAE。来自:DeconstructingDeno
- 心理学家支招,调节情绪的11个tips
水中盐
以下是心理学家给你的在日常生活中调节情绪的11个tips:睡眠、饮食、锻炼:我以前在纪律系列中写过一些方式方法。舒适的环境:尽量不少去噪声大、人流拥挤的地方,多接触绿色植物和自然光。我知道,我知道,大城市挤地铁上996班的无奈。室内盆栽也好哈。小说、电影:沉浸式的阅读,不是被动地刷社交媒体哦。给予和感激:美国的心理学家说,轮流请客比AA制好。我觉得你还是看朋友和账单情况哈。丰富情绪词汇:就像优秀的
- 帮我写一份关于车牌识别的opencv、python报告
Waiyuet Fung
pythonopencv计算机视觉人工智能深度学习
好的,我会尽力帮你写一份关于车牌识别的报告。首先,车牌识别是一种常见的计算机视觉任务,它旨在使用计算机图像处理技术来识别车辆的车牌号码。这对于自动驾驶车辆、停车场管理、交通监控等应用非常重要。使用OpenCV和Python进行车牌识别的一般流程如下:图像预处理:首先,我们需要对输入的图像进行预处理,以确保图像质量较高。这可能包括对图像进行灰度化、去噪、二值化等操作。车牌定位:接下来,我们需要在图像
- 应广大同学的要求,提供一个基于matlab夜间车牌自动识别给大家参考
依然风yrlf
车牌识别matlab开发语言计算机视觉人工智能
要在MATLAB中实现夜间车牌自动识别,可以遵循以下步骤:图像采集与预处理:使用摄像头或加载已保存的夜间车牌图像。对图像进行预处理,如灰度化、去噪、增强对比度等。车牌区域检测:使用图像处理技术,如边缘检测、形态学操作等,来检测图像中的车牌区域。字符分割:将检测到的车牌区域分割成单独的字符。可以使用基于像素投影或基于模板匹配的方法来进行字符分割。字符识别:对每个分割的字符进行识别。可以使用机器学习方
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,