用matlab实现神经网络识别数字

Andrew Ng机器学习第四周的编程练习是用matlab实现一个神经网络对一幅图中的数字进行识别,有待识别的数字全集如下:



其中每一个数字都是一个大小为20*20像素的图像,如果把每个像素作为一个输入单元,那有400个输入。考虑到神经网络还需要增加一个额外输入单元表示偏差,一共有401个输入单元。题目中给的训练数据X是一个5000*400的向量。

题目中要求包含一个25个节点的隐藏层,隐藏层也存在表示偏差的额外输入,所以一共有26个输入。

最终的输出结果是一个10维的向量,分别表示该数字在0-9上面的概率值(由于没有0这个下标位,这里题目中把0标记为10,其余1-9还是对应1-9),找到其中概率最大的就是要识别的结果。

神经网络的结构如下:



从上图可以看到,神经网络中除了输入参数外,还包含Theta1和Theta2两个参数。

其中的Theta1就表示输入层到隐含层中每条边的权重,为25*401的向量。Theta2是隐含层到输出层每条边的权重,为10*26的向量。

为了把数据标准化减少误差,这里要对每一步的输出用sigmoid函数进行处理。

构造好神经网络后,首先是用训练数据进行训练,得出Theta1和Theta2的权重信息,然后就可以预测了。

主要的matlab代码如下:

%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  linear exercise. You will need to complete the following functions 
%  in this exericse:
%
%     lrCostFunction.m (logistic regression cost function)
%     oneVsAll.m
%     predictOneVsAll.m
%     predict.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% Setup the parameters you will use for this exercise
input_layer_size  = 400;  % 20x20 Input Images of Digits
hidden_layer_size = 25;   % 25 hidden units
num_labels = 10;          % 10 labels, from 1 to 10   
                          % (note that we have mapped "0" to label 10)

%% =========== Part 1: Loading and Visualizing Data =============
%  We start the exercise by first loading and visualizing the dataset. 
%  You will be working with a dataset that contains handwritten digits.
%

% Load Training Data
fprintf('Loading and Visualizing Data ...\n')

load('ex3data1.mat');
m = size(X, 1);

% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);

displayData(X(sel, :));

fprintf('Program paused. Press enter to continue.\n');
pause;

%% ================ Part 2: Loading Pameters ================
% In this part of the exercise, we load some pre-initialized 
% neural network parameters.

fprintf('\nLoading Saved Neural Network Parameters ...\n')

% Load the weights into variables Theta1 and Theta2
load('ex3weights.mat');

%% ================= Part 3: Implement Predict =================
%  After training the neural network, we would like to use it to predict
%  the labels. You will now implement the "predict" function to use the
%  neural network to predict the labels of the training set. This lets
%  you compute the training set accuracy.

pred = predict(Theta1, Theta2, X);

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

fprintf('Program paused. Press enter to continue.\n');
pause;

%  To give you an idea of the network's output, you can also run
%  through the examples one at the a time to see what it is predicting.

%  Randomly permute examples
rp = randperm(m);

for i = 1:m
    % Display 
    fprintf('\nDisplaying Example Image\n');
    displayData(X(rp(i), :));

    pred = predict(Theta1, Theta2, X(rp(i),:));
    fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
    
    % Pause
    fprintf('Program paused. Press enter to continue.\n');
    pause;
end

预测函数如下:

function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
%   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
%   trained weights of a neural network (Theta1, Theta2)

% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned neural network. You should set p to a 
%               vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
%       function can also return the index of the max element, for more
%       information see 'help max'. If your examples are in rows, then, you
%       can use max(A, [], 2) to obtain the max for each row.
%
X = [ones(m, 1) X];
predictZ=X*Theta1';
predictZ=sigmoid(predictZ);
predictZ=[ones(m,1) predictZ];
predictZZ=predictZ*Theta2';
predictY=sigmoid(predictZZ);
[mp,imp]=max(predictY,[],2);
p=imp;








% =========================================================================


end

最终运算截图如下:



最后与回归分析做个对比:

回归分析需要对每个数字训练一个分类器,这里需要训练10个,每一个分类器迭代50次,结果为:



显然神经网络准确率要比回归分析高,同时也要显得简洁很多,代码行数也明显减少,这也正是神经网络的优势所在。




你可能感兴趣的:(Machine,learning)