Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
FJ is about to take his N (1 ≤ N ≤ 2,000) cows to the annual"Farmer of the Year" competition. In this contest every farmer arranges his cows in a line and herds them past the judges.
The contest organizers adopted a new registration scheme this year: simply register the initial letter of every cow in the order they will appear (i.e., If FJ takes Bessie, Sylvia, and Dora in that order he just registers BSD). After the registration phase ends, every group is judged in increasing lexicographic order according to the string of the initials of the cows' names.
FJ is very busy this year and has to hurry back to his farm, so he wants to be judged as early as possible. He decides to rearrange his cows, who have already lined up, before registering them.
FJ marks a location for a new line of the competing cows. He then proceeds to marshal the cows from the old line to the new one by repeatedly sending either the first or last cow in the (remainder of the) original line to the end of the new line. When he's finished, FJ takes his cows for registration in this new order.
Given the initial order of his cows, determine the least lexicographic string of initials he can make this way.
Input
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single initial ('A'..'Z') of the cow in the ith position in the original line
Output
The least lexicographic string he can make. Every line (except perhaps the last one) contains the initials of 80 cows ('A'..'Z') in the new line.
Sample Input
6 A C D B C B
Sample Output
ABCBCD
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
Farmer John is assigning some of his N (1 <= N <= 25,000) cows to do some cleaning chores around the barn. He always wants to have one cow working on cleaning things up and has divided the day into T shifts (1 <= T <= 1,000,000), the first being shift 1 and the last being shift T.
Each cow is only available at some interval of times during the day for work on cleaning. Any cow that is selected for cleaning duty will work for the entirety of her interval.
Your job is to help Farmer John assign some cows to shifts so that (i) every shift has at least one cow assigned to it, and (ii) as few cows as possible are involved in cleaning. If it is not possible to assign a cow to each shift, print -1.
Input
* Line 1: Two space-separated integers: N and T
* Lines 2..N+1: Each line contains the start and end times of the interval during which a cow can work. A cow starts work at the start time and finishes after the end time.
Output
* Line 1: The minimum number of cows Farmer John needs to hire or -1 if it is not possible to assign a cow to each shift.
Sample Input
3 10 1 7 3 6 6 10
Sample Output
2
Hint
This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.
INPUT DETAILS:
There are 3 cows and 10 shifts. Cow #1 can work shifts 1..7, cow #2 can work shifts 3..6, and cow #3 can work shifts 6..10.
OUTPUT DETAILS:
By selecting cows #1 and #3, all shifts are covered. There is no way to cover all the shifts using fewer than 2 cows.
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
In this problem at each moment you have a set of intervals. You can move from interval (a, b) from our set to interval (c, d) from our set if and only if c < a < d or c < b < d. Also there is a path from interval I1from our set to interval I2 from our set if there is a sequence of successive moves starting from I1 so that we can reach I2.
Your program should handle the queries of the following two types:
Answer all the queries. Note, that initially you have an empty set of intervals.
Input
The first line of the input contains integer n denoting the number of queries, (1 ≤ n ≤ 100). Each of the following lines contains a query as described above. All numbers in the input are integers and don't exceed 109 by their absolute value.
It's guaranteed that all queries are correct.
Output
For each query of the second type print "YES" or "NO" on a separate line depending on the answer.
Examples
Input
5 1 1 5 1 5 11 2 1 2 1 2 9 2 1 2
Output
NO YES
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998 Huge input, scanf is recommended.
Hint
Hint
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include