caffe实现多标签分类:制作LMDB的方式

Caffe自带的图像转LMDB接口只支持单label,对于多label的任务,可以使用HDF5的格式,也可以通过修改caffe代码来实现, 我的文章Caffe 实现多标签分类 里介绍了怎么通过修改ImageDataLayer来实现Multilabel的任务, 本篇文章介绍怎么通过修改DataLayer来实现带Multilabel的LMDB格式数据输入的分类任务

1. 首先修改代码

        修改下面的几个文件:

        $CAFFE_ROOT/src/caffe/proto/caffe.proto

        $CAFFE_ROOT/src/caffe/layers/data_layer.cpp

        $CAFFE_ROOT/src/caffe/util/io.cpp

        $CAFFE_ROOT/include/caffe/util/io.hpp

        $CAFFE_ROOT/tools/convert_imageset.cpp

  (1) 修改 caffe.proto

              在 message Datum { }里添加用于容纳labels的一项

caffe实现多标签分类:制作LMDB的方式_第1张图片

    repeated float labels = 8;

          如果你的Label只有int类型,可以用 repeated int32 labels = 8; 

 (2) 修改 data_layer.cpp

         修改函数 DataLayerSetUp()

         新的代码:

vector label_shape(2);
label_shape[0] = batch_size;
label_shape[1] = datum.labels_size();
   代码修改前后,右边是修改后的代码

caffe实现多标签分类:制作LMDB的方式_第2张图片


        修改函数  load_batch()

  新的代码:

int labelSize = datum.labels_size();
for(int i = 0; i < labelSize; i++){
     top_label[item_id*labelSize + i] = datum.labels(i);
}
代码修改前后,右边是修改后的代码


  (3) 修改 io.hpp

   新的代码

bool ReadFileToDatum(const string& filename, const vector label, Datum* datum);
 
inline bool ReadFileToDatum(const string& filename, Datum* datum) {
  return ReadFileToDatum(filename, vector(), datum);
}
 
bool ReadImageToDatum(const string& filename, const vector label,
    const int height, const int width, const bool is_color,
    const std::string & encoding, Datum* datum);
 
inline bool ReadImageToDatum(const string& filename, const vector label,
    const int height, const int width, const bool is_color, Datum* datum) {
  return ReadImageToDatum(filename, label, height, width, is_color,
                          "", datum);
}
 
inline bool ReadImageToDatum(const string& filename, const vector label,
    const int height, const int width, Datum* datum) {
  return ReadImageToDatum(filename, label, height, width, true, datum);
}
 
inline bool ReadImageToDatum(const string& filename, const vector label,
    const bool is_color, Datum* datum) {
  return ReadImageToDatum(filename, label, 0, 0, is_color, datum);
}
 
inline bool ReadImageToDatum(const string& filename, const vector label,
    Datum* datum) {
  return ReadImageToDatum(filename, label, 0, 0, true, datum);
}
 
inline bool ReadImageToDatum(const string& filename, const vector label,
    const std::string & encoding, Datum* datum) {
  return ReadImageToDatum(filename, label, 0, 0, true, encoding, datum);
}
代码修改前后,右边是修改后的代码

caffe实现多标签分类:制作LMDB的方式_第3张图片

  (4) 修改 io.cpp

   修改函数 ReadImageToDatum()

   修改后的代码

bool ReadImageToDatum(const string& filename, const vector label,
    const int height, const int width, const bool is_color,
    const std::string & encoding, Datum* datum) {
  cv::Mat cv_img = ReadImageToCVMat(filename, height, width, is_color);
  if (cv_img.data) {
    if (encoding.size()) {
      if ( (cv_img.channels() == 3) == is_color && !height && !width &&
          matchExt(filename, encoding) )
        return ReadFileToDatum(filename, label, datum);
      std::vector buf;
      cv::imencode("."+encoding, cv_img, buf);
      datum->set_data(std::string(reinterpret_cast(&buf[0]),
                      buf.size()));
      
      datum->clear_labels();
      for (int i = 0; i < label.size(); i++){
         datum->add_labels(label[i]);
      }     
      datum->set_encoded(true);
      return true;
    }
    CVMatToDatum(cv_img, datum);
    
    datum->clear_labels();
    for (int i = 0; i < label.size(); i++){
       datum->add_labels(label[i]);
    }     
    return true;
  } else {
    return false;
  }
}
代码修改前后,右边是修改后的代码

caffe实现多标签分类:制作LMDB的方式_第4张图片

  修改函数 ReadFileToDatum()

  修改后的代码

bool ReadFileToDatum(const string& filename, const vector label,
    Datum* datum) {
  std::streampos size;
 
  fstream file(filename.c_str(), ios::in|ios::binary|ios::ate);
  if (file.is_open()) {
    size = file.tellg();
    std::string buffer(size, ' ');
    file.seekg(0, ios::beg);
    file.read(&buffer[0], size);
    file.close();
    datum->set_data(buffer);
    
    datum->clear_labels();
    for (int i = 0; i < label.size(); i++){
       datum->add_labels(label[i]);
    }  
    datum->set_encoded(true);
    return true;
  } else {
    return false;
  }
}
   代码修改前后,右边是修改后的代码

caffe实现多标签分类:制作LMDB的方式_第5张图片


  
  (5) 修改 convert_imageset.cpp

              修改部分新的代码

std::vector > > lines;
  std::string line, filename;
  
  float label;
  while (std::getline(infile, line)) {
    std::istringstream iss(line);
    iss >> filename;
    std::vector labels;
    while(iss >> label) {
       labels.push_back(label);
    }
    lines.push_back(std::make_pair(filename, labels));
  }
   代码修改前后,右边是修改后的代码

caffe实现多标签分类:制作LMDB的方式_第6张图片

2. 编译代码

mark@ubuntu:~/caffe/build$ make all
mark@ubuntu:~/caffe/build$ sudo make install

3. 生成LMDB文件

编译成功后,使用新生成的 convert_imageset 将训练所用的图片转换成LMDB文件

将训练所用图片转换为LMDB文件

mark@ubuntu:~/caffe$ sudo ./build/tools/convert_imageset -shuffle=true  /home/mark/data/  /home/mark/data/train.txt  ./examples/captcha/captcha_train_lmdb

/home/mark/data/                  是训练所用的图片所在的root目录
/home/mark/data/train.txt  记录每个训练图片文件的名称和标签,它的内容见下图,训练图片文件的名称和/home/mark/data/拼接起来是训练图片的绝对路径
./examples/captcha/captcha_train_lmdb 是生成的lmdb文件所在目录

同样可以将测试图片转换成LMDB文件

mark@ubuntu:~/caffe$ sudo ./build/tools/convert_imageset -shuffle=true  /home/mark/data/  /home/mark/data/test.txt  ./examples/captcha/captcha_test_lmdb

4. 网络结构和solver

网络结构文件 captcha_train_test_lmdb.prototxt

name: "captcha"
layer {  
  name: "Input"  
  type: "Data"  
  top: "data"  
  top: "label"  
  include {  
    phase: TRAIN  
  }  
  transform_param {  
    scale: 0.00390625
  }  
  data_param {  
    source: "examples/captcha/captcha_train_lmdb"    
    batch_size: 50
    backend: LMDB
  }  
}  

layer {  
  name: "Input"  
  type: "Data"  
  top: "data"  
  top: "label"  
  include {  
    phase: TEST  
  }  
  transform_param {  
    scale: 0.00390625
  }  
  data_param {  
    source: "examples/captcha/captcha_test_lmdb"    
    batch_size: 20
    backend: LMDB
  }  
}    

layer {
  name: "slice"
  type: "Slice"
  bottom: "label"
  top: "label_1"
  top: "label_2"
  top: "label_3"
  top: "label_4"
  slice_param {
    axis: 1
    slice_point:1
    slice_point:2
    slice_point:3
  }

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}

layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 100
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_1"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_2"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_3"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_4"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_4"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "accuracy1"
  type: "Accuracy"
  bottom: "ip3_1"
  bottom: "label_1"
  top: "accuracy1"
  include {
    phase: TEST
  }
}
layer {
  name: "loss1"
  type: "SoftmaxWithLoss"
  bottom: "ip3_1"
  bottom: "label_1"
  top: "loss1"
}

layer {
  name: "accuracy2"
  type: "Accuracy"
  bottom: "ip3_2"
  bottom: "label_2"
  top: "accuracy2"
  include {
    phase: TEST
  }
}
layer {
  name: "loss2"
  type: "SoftmaxWithLoss"
  bottom: "ip3_2"
  bottom: "label_2"
  top: "loss2"
}

layer {
  name: "accuracy3"
  type: "Accuracy"
  bottom: "ip3_3"
  bottom: "label_3"
  top: "accuracy3"
  include {
    phase: TEST
  }
}
layer {
  name: "loss3"
  type: "SoftmaxWithLoss"
  bottom: "ip3_3"
  bottom: "label_3"
  top: "loss3"
}

layer {
  name: "accuracy4"
  type: "Accuracy"
  bottom: "ip3_4"
  bottom: "label_4"
  top: "accuracy4"
  include {
    phase: TEST
  }
}
layer {
  name: "loss4"
  type: "SoftmaxWithLoss"
  bottom: "ip3_4"
  bottom: "label_4"
  top: "loss4"
}
solver文件 captcha_solver_lmdb.prototxt
# The train/test net protocol buffer definition
net: "examples/captcha/captcha_train_test_lmdb.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# covering the full 9,800 testing images.
test_iter: 200
# Carry out testing every 200 training iterations.
test_interval: 200
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/captcha/captcha"
# solver mode: CPU or GPU
solver_mode: GPU

5. 开始训练
mark@ubuntu:~/caffe$ sudo ./build/tools/caffe train --solver=examples/captcha/captcha_solver_lmdb.prototxt

训练完后,生成model文件:   captcha_iter_10000.caffemodel

6. 用生成的model 文件进行测试

首先,需要一个deploy.prototxt文件,在captcha_train_test_lmdb.prototxt的基础上修改,修改后保存为 captcha_deploy_lmdb.prototxt  内容如下

name: "captcha"

input: "data"  
input_dim: 1   # batchsize  
input_dim: 3   # number of channels - rgb  
input_dim: 60  # height
input_dim: 160 # width

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}

layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 100
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_1"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_2"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_3"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "ip3_4"
  type: "InnerProduct"
  bottom: "ip2"
  top: "ip3_4"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer {
  name: "prob1"
  type: "Softmax"
  bottom: "ip3_1"
  top: "prob1"
}
layer {
  name: "prob2"
  type: "Softmax"
  bottom: "ip3_2"
  top: "prob2"
}
layer {
  name: "prob3"
  type: "Softmax"
  bottom: "ip3_3"
  top: "prob3"
}
layer {
  name: "prob4"
  type: "Softmax"
  bottom: "ip3_4"
  top: "prob4"
}

编写测试代码:

import numpy as np    
import os    
import sys   
os.environ['GLOG_minloglevel'] = '3'   
import caffe    
    
CAFFE_ROOT = '/home/mark/caffe'    
deploy_file_name = 'captcha_deploy_lmdb.prototxt'    
model_file_name  = 'captcha_iter_10000.caffemodel'   
  
IMAGE_HEIGHT = 60  
IMAGE_WIDTH = 160  
IMAGE_CHANNEL = 3  
  
def classify(imageFileName):  
    deploy_file = CAFFE_ROOT + '/examples/captcha/' + deploy_file_name    
    model_file  = CAFFE_ROOT + '/examples/captcha/' + model_file_name  
    #初始化caffe   
    net = caffe.Net(deploy_file, model_file, caffe.TEST)  
  
    #数据预处理      
    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})      
    transformer.set_transpose('data', (2, 0, 1))#pycaffe读取的图片文件格式为H×W×C,需转化为C×H×W  
  
    #pycaffe将图片存储为[0, 1], 如果模型输入用的是0~255的原始格式,需要做如下转换  
    #transformer.set_raw_scale('data', 255)     
  
    transformer.set_channel_swap('data', (2, 1, 0))#caffe中图片是BGR格式,而原始格式是RGB,所以要转化   
  
    # 将输入图片格式转化为合适格式(与deploy文件相同)  
    net.blobs['data'].reshape(1, IMAGE_CHANNEL, IMAGE_HEIGHT, IMAGE_WIDTH)  
  
    #读取图片  
    #参数color: True(default)是彩色图,False是灰度图  
    img = caffe.io.load_image(imageFileName, color=True)  
  
    #数据输入、预处理  
    net.blobs['data'].data[...] = transformer.preprocess('data', img)  
  
    #前向迭代,即分类  
    out = net.forward()  
  
    #求出每个标签概率最大值的下标  
    result = []  
    predict1 = out['prob1'][0].argmax()  
    result.append(predict1)  
  
    predict2 = out['prob2'][0].argmax()  
    result.append(predict2)  
  
    predict3 = out['prob3'][0].argmax()  
    result.append(predict3)  
  
    predict4 = out['prob4'][0].argmax()  
    result.append(predict4)      
      
    return result  
          
if __name__ == '__main__':  
  
   imgList = sys.argv[1:]  
   for captcha in imgList:  
       predict = classify(captcha)  
       print "captcha:", captcha, "  predict:", predict 


 
原文:https://blog.csdn.net/sushiqian/article/details/78771546 
 

你可能感兴趣的:(caffe自定义层)