- pytorch 介绍以及常用工具包展示
R0ot
pytorch人工智能python
1.引言1.1背景:神经网络和深度学习的崛起介绍神经网络和深度学习在计算机科学和人工智能中的重要性。1.2PyTorch简介:张量计算框架的演进回顾PyTorch作为张量计算框架的发展历程。强调其灵活性、动态计算图和深度学习社区的支持。2.PyTorch基础2.1张量:PyTorch的核心数据结构创建和操作张量的基本操作,如加法、乘法等。张量的自动微分功能,介绍autograd模块。2.2动态计算
- 人工智能与开源机器学习框架
偶然i
AI写作人工智能aiAI写作科技
链接:华为机考原题TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个针对神经网络和深度学习的强大工具集,能够帮助开发人员构建和训练各种机器学习模型。TensorFlow的基本概念包括:张量(Tensor):张量是TensorFlow中的核心数据结构,它表示多维数组或矩阵。在TensorFlow中,所有的输入数据、模型参数和输出结果都被表示为张量。计算图(Compu
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 神经网络和深度学习
灰斗儿
原著作者:michael_nielsen前往神经网络和深度学习神经网络和深度学习是一本免费的在线图书,这本书将教给你:神经网络,是一个由于生物启发的编程规范,使计算机通过观察数据进行学习深度学习,一种强大的神经网络学习技术神经网络和深度学习目前为图像识别、语音识别和自然语言处理中的许多问题提供了最好的解决方案。这本书将教你许多神经网络和深度学习背后的核心概念。有关这本书所采取的方法的更多的细节,看
- 神经网络和深度学习(一):深度学习概论
文哥的学习日记
视频地址:http://mooc.study.163.com/learn/2001281002?tid=2001392029#/learn/content?type=detail&id=2001701005&cid=20016940041、什么是神经网络我们来看一个简单的预测房价的例子,吴恩达老师还真是喜欢用这个例子呢。比如我们用房屋的大小来预测房屋的价格,我们在图上的得到了六个点,那么根据这六个
- 神经网络和深度学习第一周学习笔记
热爱生活的小谢
neuronnetwork:是一种非常强大的学习算法,这种算法的灵感来源与人类的大脑组成ReLUReLU函数的特点是初始值为0,之后变为一条直线singleneuron上图圆圈的部分代表单个神经元,其完成的任务为输入x可以输出相对应的y上图表示由多个神经元聚集而成的神经网络(multipleneuronnetwork)上图为surpervisedlearning的一些具体应用对于第1,2种应用,使
- Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(四)
绝不原创的飞龙
人工智能tensorflow
原文:Hands-OnMachineLearningwithScikit-Learn,Keras,andTensorFlow译者:飞龙协议:CCBY-NC-SA4.0第二部分:神经网络和深度学习第十章:使用Keras入门人工神经网络鸟类启发我们飞行,牛蒡植物启发了钩带,自然启发了无数更多的发明。因此,看看大脑的结构以获取如何构建智能机器的灵感似乎是合乎逻辑的。这就是激发人工神经网络(ANNs)的逻
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- ChatGPT高效提问—基础知识(AIGC)
Bruce_Liuxiaowei
笔记总结经验chatgptAIGC
ChatGPT高效提问—基础知识为了更好地学习AI和prompt相关知识,有必要了解AI领域的几个专业概念。1.1初识AIGCAIGC(artificialintelligencegeneratedcontent)即人工智能生成的内容,可以理解为利用人工智能技术自动生成文本、图像、音频和视频等内容。神经网络和深度学习技术的迅猛发展使得AIGC成为众多领域的重要工具,包括新闻撰写、艺术创作、广告制作
- Coursera吴恩达《神经网络和深度学习》课程笔记(3)
遇见更好的自己
深度学习深度学习神经网络
转载自http://blog.csdn.net/koala_tree/article/details/78059952神经网络和深度学习—浅层神经网络1.神经网络表示简单神经网络示意图:神经网络基本的结构和符号可以从上面的图中看出,这里不再复述。主要需要注意的一点,是层与层之间参数矩阵的规格大小:输入层和隐藏层之间w[1]−>(4,3):前面的4是隐层神经元的个数,后面的3是输入层神经元的个数;b
- 神经网络和深度学习吴恩达coursera笔记
stoAir
深度学习神经网络笔记
DeepLearning文章目录DeepLearningBasicLogisticRegressionsomesignLossfunctioncostfunctionGradientDescentComputationGraphaVectorizationvectorizedImplementing:broadcastingShallowNeuralNetworkRepresentationcom
- 生成式AI人工智能
数据科学与艺术的贺公子
人工智能
生成式AI人工智能生成式AI生成式AI的核心思想生成对抗网络变分自编码器应用总结生成式AI生成式AI指的是基于神经网络和深度学习技术的人工智能系统,其能够根据输入的数据生成新的内容。生成式AI包括了众多的模型和算法,可以用于多个领域的任务,如自然语言处理、图像生成和音频合成等。生成式AI的核心思想是通过学习大量的数据样本,推断出数据的分布和潜在模式,从而能够生成与之类似的新数据。其中最常见的模型是
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- Course1神经网络和深度学习编程作业
毛十三_
第三周-带有一个隐藏层的平面数据分类建立一个神经网络,带有一个隐藏层。用到的知识:构建具有单隐藏层的2类分类神经网络。使用具有非线性激活功能激活函数,例如tanh。计算交叉熵损失(损失函数)。实现向前和向后传播。numpy:是用Python进行科学计算的基本软件包。sklearn:为数据挖掘和数据分析提供的简单高效的工具。matplotlib:是一个用于在Python中绘制图表的库。testCas
- BP神经网络需要像深度学习一次次的迭代训练吗?
小桥流水---人工智能
机器学习算法Python程序代码深度学习神经网络人工智能
BP神经网络答案:是的,BP神经网络需要像深度学习一次次的迭代训练。总结(BP神经网络和深度学习在本质上有以下区别)答案:是的,BP神经网络需要像深度学习一次次的迭代训练。BP神经网络(误差反传网络)实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法。其训练过程包括正向传播和反向传播两个阶段。在正向传播阶段,输入数据通过神经网络的
- 深度学习入门之1--感知机
梦灯
python人工智能
目录1什么是感知机2简单逻辑电路及实现2.1与门2.2或门2.3与非门2.4异或门3总结该文章是对《深度学习入门基于Python的理论与实现》的总结,作者是[日]斋藤康毅1什么是感知机感知机是由美国学者FrankRosenblatt在1957年提出来的,感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。感知机接收多个输入信号,输出
- Pytorch Overview
丘小羽
pytorchpytorch人工智能python
目录学习目标:要求:监督学习和无监督学习:深度学习基本方法:经典的机器学习方法:表示学习的改进:为什么要进行特征提取:深度学习的改进:深度学习的发展:神经网络的简单介绍:深度学习算法的三大支撑:学习目标:如何使用pytorch来实现一个学习系统。理解最基本的神经网络和深度学习的概念。要求:线性代数。概率论和数理统计。Python语法。监督学习和无监督学习:监督学习:监督学习是指在输入数据和输出数据
- 吴恩达DeepLearningAI课程学习资源和课程总结
李大文
深度学习深度学习机器学习tensorflow
一、学习资源:吴恩达老师的DeepLearningAI课程分为5门课程:神经网络和深度学习、改善深层神经网络、结构化机器学习项目、卷积神经项目和序列模型。目前主要学习了前四门课程,遂做一些总结。以下是一些课堂学习资源:1、课程的视屏资源在有道云课堂上有:https://study.163.com/provider/2001053000/course.htm2、另外还有黄海广博士做的详细的DeepL
- 地球物理中的深度学习理论(DNN的架构、反向传播、梯度消失、梯度爆炸)
hhhhhhhhhhyyyyyy
深度学习
新的数据驱动技术,即深度学习(DL)引起了广泛的关注。DL能准确预测复杂系统,缓解大型地球物理应用中“维数灾难”。在未来地球物理学中涉及到DL的研究提供了几个有希望的方向,例如无监督学习(聚类)、迁移学习(利用之前标记好的数据)、多模态DL(通过DL实现和处理多元模态)、联邦学习、不确定性估计和主动学习。图1给出人工智能、机器学习、神经网络和深度学习之间的包含关系,以及深度学习方法的分类。图11、
- 【吴恩达deeplearning】第一门课 - 第二周 - 神经网络的编程基础(笔记+习题+编程作业)
卷卷0v0
吴恩达深度学习课程神经网络笔记人工智能机器学习深度学习
第一门课-神经网络和深度学习(第二周-神经网络的编程基础)2.1二分类(BinaryClassification)二分类中的逻辑回归2.2逻辑回归(LogisticRegression)2.3逻辑回归的代价函数损失函数(误差函数)代价函数(成本函数)2.4梯度下降法2.8使用计算图求导数2.9逻辑回归中的梯度下降单个样本实例m个样本的梯度下降2.11向量化2.14向量化逻辑回归代码流程(非向量化)
- 【吴恩达deeplearning】第一门课 - 第一周 - 深度学习引言(笔记+习题)
卷卷0v0
吴恩达深度学习课程深度学习笔记人工智能python神经网络
第一门课-神经网络和深度学习(第一周-深度学习引言)1.2什么是神经网络1.3神经网络的监督学习【概念习题】1.2什么是神经网络在预测房屋价格时,除了房屋的面积,其他的特征例如卧室的数量也会影响房屋的价格。邮政编码或许能作为一个特征,反映步行化程度,也可能体现出附近学校的水平有多好。在图上每一个画的小圆圈都可以是ReLU的一部分,或者其它非线性的函数。基于房屋面积和卧室数量,可以估算家庭人口;基于
- 第一门课 神经网络和深度学习
彳亍cium
第一门课神经网络和深度学习(NeuralNetworksandDeepLearning)第一周:深度学习引言(IntroductiontoDeepLearning)1.1欢迎(Welcome)第一个视频主要讲了什么是深度学习,深度学习能做些什么事情。以下是吴恩达老师的原话:深度学习改变了传统互联网业务,例如如网络搜索和广告。但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康
- 神经网络和深度学习(吴恩达) 第二周课程提炼
北冥丶有鱼
本系列笔记旨在记录自己的学习过程,能够及时回顾整理学过的东西,有助于加深理解和记忆,方便今后回看。学这个课程的同时,也在看《机器学习》(周志华),所以会将书和视频的内容结合来看,综合学习。本篇主要是第二周课程中讲到的:二分分类、Logistic回归、损失函数、梯度下降、向量化。二分分类:简单理解就是输出的结果是两个离散的值,就像课程中举的例子:通过输入一张图片的信息,经过一系列的计算,输出一个离散
- 神经网络和深度学习(四)—反向传播工作原理
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】简要介绍反向传播算法【嵌牛鼻子】深度学习神经网络反向传播算法【嵌牛提问】如何将反向传播算法应用到神经网络反向传播算法工作原理在上一篇文章,我们看到了神经网络如何通过梯度下降算法学习,从而改变权重和偏差。但是,前面我们并没有讨论如何计算代价函数的梯度,这是一个很大的遗憾。这一篇文章,我们将介绍一种称为反向传播的快速计算梯度的算法。
- Pytorch学习概述
chairon
PyTorch深度学习实践pytorch学习人工智能
目录学习目标人工智能1.智能(Intelligence)1.1人类智能1.2机器学习(人工智能)1.3深度学习1.4学习系统的发展历程传统的机器学习策略2.传统机器学习算法的一些挑战3.神经网络的简要历史3.1BackPropagation(反向传播)3.2神经网络模型发展历程3.3深度学习框架学习目标学会使用Pytorch构建学习系统理解基础的神经网络和深度学习需要具备:线性代数+概率论(随机变
- 阶段五:深度学习和人工智能(学习神经网络和深度学习的基本概念)
哈嗨哈
深度学习人工智能学习python
神经网络和深度学习是人工智能领域的重要分支,它们都基于模拟人脑神经元之间的连接和交互。下面是一些基本概念:神经网络:神经网络是一种模拟人脑神经元连接方式的计算模型,由多个神经元相互连接而成。每个神经元接收输入信号,通过激活函数进行非线性转换,然后将输出传递给其他神经元。神经网络的主要特点是能够学习和优化自身的权重和偏置,以更好地完成特定的任务。深度学习:深度学习是机器学习的一个分支,它使用深层神经
- 神经网络和深度学习(四)—梯度下降算法
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】对梯度下降法的具体应用【嵌牛鼻子】深度学习神经网络梯度下降【嵌牛提问】如何将梯度下降算法应用到神经网络说了这么多,你可能会以为接下来我将介绍牛顿定理,摩擦力和重力对球体的影响。事实上,我们只是做了一个假设,并不是真的要用这个球的运动来寻找最小值。提到球只是用来激发我们的想象力,而不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节
- 用 C 写一个卷积神经网络
zerok775
编程基础cnn人工智能神经网络
用C写一个卷积神经网络深度学习领域最近发展很快,前一段时间读transformer论文《AttentionIsAllYouNeed》时,被一些神经网络和深度学习的概念搞得云里雾里,其实也根本没读懂。发现深度学习和传统的软件开发工程领域的差别挺大,光读论文可能不是一条很好了解深度学习的路径。所以我换了一个思路,从开源的项目入手,当时我研究了一段时间ggml项目代码(https://github.co
- 介绍 TensorFlow 的基本概念和使用场景
跃跃欲试-迪之
python
TensorFlow是由Google开发的一款开源机器学习框架,它能够支持各种类型的神经网络和深度学习算法。TensorFlow的基本概念包括以下几个方面:Tensor:Tensor表示在TensorFlow中的数据存储和传递方式,可以类比为多维数组。Graph:Graph表示神经网络的计算图,在TensorFlow中所有计算都是通过计算图实现的。Session:Session表示计算图的运行环境
- 感知器(Perceptron)详解以及实现
h52013141
机器学习算法python
感知器(Perceptron)详解感知器是一种简单的线性二分类算法,它是神经网络和深度学习的基础之一。感知器的核心概念感知器模型基于将输入特征加权求和,然后应用激活函数来决定输出类别。1.输入和权重输入:x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn是特征向量。权重:w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn是每个特征的权重。2.
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor