1.矩阵重建
numpy.reshape(a, newshape, order='C')
eg1:
>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],
[2, 3],
[4, 5]])
eg2:
>>> np.reshape(a, (2, 3)) # C-like index ordering array([[0, 1, 2], [3, 4, 5]]) >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape array([[0, 1, 2], [3, 4, 5]]) >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering array([[0, 4, 3], [2, 1, 5]]) >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F') array([[0, 4, 3], [2, 1, 5]])eg.3
>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]])
eg1:
For 2-D arrays it is the matrix product:
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.matmul(a, b)
array([[4, 1],
[2, 2]])
eg2:
For 2-D mixed with 1-D, the result is the usual>>
>>> a = [[1, 0], [0, 1]]
>>> b = [1, 2]
>>> np.matmul(a, b)
array([1, 2])
>>> np.matmul(b, a)
array([1, 2])