B.华华教月月做题--牛客小白月赛12 (快速幂+快速乘 或 大整数 或__int128)

链接:https://ac.nowcoder.com/acm/contest/392/B
来源:牛客网
 

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld

题目描述

找到了心仪的小姐姐月月后,华华很高兴的和她聊着天。然而月月的作业很多,不能继续陪华华聊天了。华华为了尽快和月月继续聊天,就提出帮她做一部分作业。
月月的其中一项作业是:给定正整数A、B、P,求ABmodPABmodP的值。华华觉得这实在是毫无意义,所以决定写一个程序来做。但是华华并不会写程序,所以这个任务就交给你了。
因为月月的作业很多,所以有T组询问。

输入描述:

第一行一个正整数T表示测试数据组数。
接下来T行,每行三个正整数A、B、P,含义如上文。

输出描述:

输出T行,每行一个非负整数表示答案。

示例1

输入

复制

2
2 5 10
57284938291657 827493857294857 384729583748273

输出

复制

2
18924650048745

备注:

1≤T≤10^3,1≤A,B,P≤10^18

题意:求A^B%P  显然直接乘会爆long long

解法一:快速幂+快速乘

附代码:

#include
using namespace std;

typedef long long ll;
const double eps=1.0e-5;
const int maxn=200000+10;
const ll mod=1e9+7;

ll quick_mul(ll a,ll b,ll c)
{
	ll ans=0;
	while(b){
		if(b&1) ans=(ans+a)%c;
		a=(a+a)%c;
		b>>=1;
	}  
	return ans;
}

ll quick_pow(ll a,ll b,ll c)
{
	ll ans=1;
	while(b){
		if(b&1) ans=quick_mul(ans,a,c);
		a=quick_mul(a,a,c);
		b>>=1;
		}
	return ans;
}

int t;
ll a,b,c;

int main()
{
	scanf("%d",&t);
	while(t--){
		scanf("%lld %lld %lld",&a,&b,&c);
		printf("%lld\n",quick_pow(a,b,c));
	}
}

 

解法二:__int128  +快速幂  (需要手写输入输出

附代码:

#include 
using namespace std;

template
E quick_pow(E a,E b,E c){
	E ans=1;
	while(b){
		if(b&1) ans=ans*a%c;
		a=a*a%c;b/=2;
	}
	return ans;
}

void scan(__int128 &x)//输入
{
    x = 0;
    int f = 1;
    char ch;
    if((ch = getchar()) == '-') f = -f;
    else x = x*10 + ch-'0';
    while((ch = getchar()) >= '0' && ch <= '9')
        x = x*10 + ch-'0';
    x *= f;
}

void _print(__int128 x)
{
    if(x > 9) _print(x/10);
    putchar(x%10 + '0');
}

void print(__int128 x)//输出
{
    if(x < 0)
    {
        x = -x;
        putchar('-');
    }
    _print(x);
}

int main()
{
	__int128 t;scan(t);
	while(t--){
    	__int128 a, b,c;
    	scan(a); scan(b);scan(c);
    	print(quick_pow(a,b,c));
    	printf("\n");
    }
}

 

解法三:C++大整数类 + 快速幂

附代码:

#include 
#define ll long long 
using namespace std;
constexpr int base = 1000000000;
constexpr int base_digits = 9;
  
struct bigint {
    // value == 0 is represented by empty z
    vector z; // digits
  
    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;
  
    bigint() : sign(1) {}
  
    bigint(long long v) {
        *this = v;
    }
  
    bigint& operator=(long long v) {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int)(v % base));
        return *this;
    }
  
    bigint(const string& s) {
        read(s);
    }
  
    bigint& operator+=(const bigint& other) {
        if (sign == other.sign) {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        } else if (other != 0 /* prevent infinite loop */) {
            *this -= -other;
        }
        return *this;
    }
  
    friend bigint operator+(bigint a, const bigint& b) {
        return a += b;
    }
  
    bigint& operator-=(const bigint& other) {
        if (sign == other.sign) {
            if (sign == 1 && *this >= other || sign == -1 && *this <= other) {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            } else {
                *this = other - *this;
                this->sign = -this->sign;
            }
        } else {
            *this += -other;
        }
        return *this;
    }
  
    friend bigint operator-(bigint a, const bigint& b) {
        return a -= b;
    }
  
    bigint& operator*=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long)z[i] * v + carry;
            carry = (int)(cur / base);
            z[i] = (int)(cur % base);
        }
        trim();
        return *this;
    }
  
    bigint operator*(int v) const {
        return bigint(*this) *= v;
    }
  
    friend pair divmod(const bigint& a1, const bigint& b1) {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());
  
        for (int i = (int)a.z.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int)(((long long)s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }
  
        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }
  
    friend bigint sqrt(const bigint& a1) {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);
  
        int n = a.z.size();
  
        int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);
  
        bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;
  
        for (int j = n / 2 - 1; j >= 0; j--) {
            for (;; --q) {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0) {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;
  
            if (j > 0) {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
            }
        }
  
        res.trim();
        return res / norm;
    }
  
    bigint operator/(const bigint& v) const {
        return divmod(*this, v).first;
    }
  
    bigint operator%(const bigint& v) const {
        return divmod(*this, v).second;
    }
  
    bigint& operator/=(int v) {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = z[i] + rem * (long long)base;
            z[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
        return *this;
    }
  
    bigint operator/(int v) const {
        return bigint(*this) /= v;
    }
  
    int operator%(int v) const {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int)z.size() - 1; i >= 0; --i)
            m = (int)((z[i] + m * (long long)base) % v);
        return m * sign;
    }
  
    bigint& operator*=(const bigint& v) {
        *this = *this * v;
        return *this;
    }
  
    bigint& operator/=(const bigint& v) {
        *this = *this / v;
        return *this;
    }
  
    bool operator<(const bigint& v) const {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }
  
    bool operator>(const bigint& v) const {
        return v < *this;
    }
  
    bool operator<=(const bigint& v) const {
        return !(v < *this);
    }
  
    bool operator>=(const bigint& v) const {
        return !(*this < v);
    }
  
    bool operator==(const bigint& v) const {
        return !(*this < v) && !(v < *this);
    }
  
    bool operator!=(const bigint& v) const {
        return *this < v || v < *this;
    }
  
    void trim() {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }
  
    bool isZero() const {
        return z.empty();
    }
  
    friend bigint operator-(bigint v) {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }
  
    bigint abs() const {
        return sign == 1 ? *this : -*this;
    }
  
    long long longValue() const {
        long long res = 0;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }
  
    friend bigint gcd(const bigint& a, const bigint& b) {
        return b.isZero() ? a : gcd(b, a % b);
    }
  
    friend bigint lcm(const bigint& a, const bigint& b) {
        return a / gcd(a, b) * b;
    }
  
    void read(const string& s) {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int)s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }
  
    friend istream& operator>>(istream& stream, bigint& v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }
  
    friend ostream& operator<<(ostream& stream, const bigint& v) {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int)v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }
  
    static vector convert_base(const vector& a, int old_digits, int new_digits) {
        vector p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a) {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }
  
    typedef vector vll;
  
    static vll karatsubaMultiply(const vll& a, const vll& b) {
        int n = a.size();
        vll res(n + n);
        if (n <= 32) {
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    res[i + j] += a[i] * b[j];
            return res;
        }
  
        int k = n >> 1;
        vll a1(a.begin(), a.begin() + k);
        vll a2(a.begin() + k, a.end());
        vll b1(b.begin(), b.begin() + k);
        vll b2(b.begin() + k, b.end());
  
        vll a1b1 = karatsubaMultiply(a1, b1);
        vll a2b2 = karatsubaMultiply(a2, b2);
  
        for (int i = 0; i < k; i++)
            a2[i] += a1[i];
        for (int i = 0; i < k; i++)
            b2[i] += b1[i];
  
        vll r = karatsubaMultiply(a2, b2);
        for (int i = 0; i < a1b1.size(); i++)
            r[i] -= a1b1[i];
        for (int i = 0; i < a2b2.size(); i++)
            r[i] -= a2b2[i];
  
        for (int i = 0; i < r.size(); i++)
            res[i + k] += r[i];
        for (int i = 0; i < a1b1.size(); i++)
            res[i] += a1b1[i];
        for (int i = 0; i < a2b2.size(); i++)
            res[i + n] += a2b2[i];
        return res;
    }
  
    bigint operator*(const bigint& v) const {
        vector a6 = convert_base(this->z, base_digits, 6);
        vector b6 = convert_base(v.z, base_digits, 6);
        vll a(a6.begin(), a6.end());
        vll b(b6.begin(), b6.end());
        while (a.size() < b.size())
            a.push_back(0);
        while (b.size() < a.size())
            b.push_back(0);
        while (a.size() & (a.size() - 1))
            a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
        res.sign = sign * v.sign;
        for (int i = 0, carry = 0; i < c.size(); i++) {
            long long cur = c[i] + carry;
            res.z.push_back((int)(cur % 1000000));
            carry = (int)(cur / 1000000);
        }
        res.z = convert_base(res.z, 6, base_digits);
        res.trim();
        return res;
    }
};
bigint quick_qow(bigint a,bigint b,bigint p)///快速幂 a^b %p
{
    bigint ans=1;
    for(;b>0;b/=2)
    {
        if(b%2==1)
            ans=(ans*a)%p ;
        a=a*a%p ;
    }
    return ans%p;
}
int main(){
    int t;
    cin>>t;
    while(t--){
        bigint a,b,c;
        cin>>a>>b>>c;
        bigint ans=quick_qow(a,b,c);
        cout<

 

你可能感兴趣的:(快速乘,大整数)