【北航oj】(线段树取模运算)

题干:

https://buaacoding.cn/contest-ng/index.html#/334/problems

K wjj 的自动售货机

时间限制:1000ms   内存限制:131072kb

通过率:14/26 (53.85%)    正确率:14/119 (11.76%)

wjj 最近很看好线下实体销售的行业, 他觉得可以先投资自动售货机来试试水。

于是他在北航的新主楼中安装了一台可以售卖 nn 种物品的售货机, 第 ii 种物品共有 aiai 个。

为了方便用户,用户每次购买时, 可以选定某个区间 [l,r][l,r] 内的种类, 然后自动售货机根据选定的区间进行出货。

记 al,al+1,⋯,ar−1,aral,al+1,⋯,ar−1,ar 非零值中的最小值为 xx, 每种物品会以 xx 个为一组、尽可能多地出货; 即出货后,物品数量 ai←(aimodx),∀i∈[l,r]ai←(aimodx),∀i∈[l,r]。

wjj 最终按顺序记录了 qq 个这样的区间信息。 他希望你能帮他计算,每次出货前和出货后,选定区间内的剩余物品数量的总和; 即分别以每次出货前和出货后的 aiai,计算 ∑ri=lai∑i=lrai。

输入

第一行包含一个正整数 TT(1≤T≤101≤T≤10),表示有 TT 组测试数据。

接下来依次给出每组测试数据。对于每组测试数据:

第一行,包含两个整数 nn 和 qq,含义见题目描述。

第二行,nn 个空格分隔的整数,依次表示序列的每一项。0≤ai≤10130≤ai≤1013(1≤i≤n1≤i≤n)。

接下来 qq 行,每行表示一组询问,格式如下:

  • L R

1≤L≤R≤n1≤L≤R≤n。

对于所有的测试数据,满足 ∑n,∑q≤2×105∑n,∑q≤2×105。

输出

对于每组数据,对于每个询问,输出空格分隔的两个整数表示答案。

输入样例

1
5 2
5 4 2 2 10
1 5
1 5

输出样例

23 1
1 0

题目大意:

   n个数,q次询问,每次询问给出一段区间,找到区间内非零的最小的数x,对该区间的每个数都更新为a[i]取模x,对于每次操作,输出更新前和更新后的区间和。

解题报告:

   由于取模运算可以使得改数字最少减小一半(证明很简单),所以对于每个数字最多logn次就降为0,所以对于更新操作可以直接暴力。对于查询最小值,注意一下排除为0的情况就可以了。

AC代码:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
const ll INF = 9223372036854775807;
int n,q;
ll a[MAX];
struct TREE {
	int l,r;
	ll val;//区间和 
	ll minn;
} tree[MAX<<2];
void pushup(int cur) {
	ll t1=tree[cur*2].minn;
	ll t2=tree[cur*2+1].minn;
	if(t1 == 0) tree[cur].minn = t2;
	else if(t2 == 0) tree[cur].minn = t1;
	else tree[cur].minn = min(t1,t2);
	tree[cur].val = tree[cur*2].val + tree[cur*2+1].val;
}
void build(int l,int r,int cur) {
	tree[cur].l = l,tree[cur].r = r;
	if(l == r) {
		tree[cur].minn = tree[cur].val = a[r];return;
	}
	int m = (l+r)>>1;
	build(l,m,cur*2);
	build(m+1,r,cur*2+1);
	pushup(cur);
}
ll qMin(int pl,int pr,int cur) {//查询区间最小值 
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].minn;
	}
	ll tmp1 = INF,tmp2 = INF;
	if(pl <= tree[cur*2].r) tmp1 = qMin(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qMin(pl,pr,cur*2+1);
	if(tmp1 == 0) {
		if(tmp2 == INF) tmp2=0;
		return tmp2;
	}
	if(tmp2 == 0) {
		if(tmp1 == INF) tmp1=0;
		return tmp1;
	}
	return min(tmp1,tmp2);
}

ll qSum(int pl,int pr,int cur) {//查询区间和
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].val;
	}
	ll tmp1 = 0,tmp2 = 0;
	if(pl <= tree[cur*2].r) tmp1 = qSum(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qSum(pl,pr,cur*2+1);
	return tmp1+tmp2;
}
void update(int pl,int pr,ll val,int cur) {
	if(tree[cur].minn == 0) return ;
	if(tree[cur].l == tree[cur].r) {
		tree[cur].val%=val;
		tree[cur].minn%=val;
		return;
	}
	if(pl <= tree[cur*2].r) update(pl,pr,val,cur*2);
	if(pr >= tree[cur*2+1].l) update(pl,pr,val,cur*2+1);
	pushup(cur);
}
int main()
{
	int t;
	cin>>t;
	while(t--) {
		scanf("%d%d",&n,&q);
		for(int i = 1; i<=n; i++) {
			scanf("%lld",a+i);
		}
		build(1,n,1);
		while(q--) {
			int l,r;
			scanf("%d%d",&l,&r);
			ll tmp = qMin(l,r,1);
			ll ans1 = qSum(l,r,1);
			ll ans2;
			if(tmp == 0) ans2 = ans1;
			else {
				update(l,r,tmp,1);
				ans2 = qSum(l,r,1);
			}
			printf("%lld %lld\n",ans1,ans2);
		}
	}
	return 0 ;
}

WA代码1:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
const ll INF = 9223372036854775807;
int n,q;
ll a[MAX];
struct TREE {
	int l,r;
	ll val;//区间和 
	ll minn;
} tree[MAX<<2];
void pushup(int cur) {
	ll t1=tree[cur*2].minn;
	ll t2=tree[cur*2+1].minn;
	if(t1 == 0) tree[cur].minn = t2;
	else if(t2 == 0) tree[cur].minn = t1;
	else tree[cur].minn = min(t1,t2);
	tree[cur].val = tree[cur*2].val + tree[cur*2+1].val;
}
void build(int l,int r,int cur) {
	tree[cur].l = l,tree[cur].r = r;
	if(l == r) {
		tree[cur].minn = tree[cur].val = a[r];return;
	}
	int m = (l+r)>>1;
	build(l,m,cur*2);
	build(m+1,r,cur*2+1);
	pushup(cur);
}
ll qMin(int pl,int pr,int cur) {//查询区间最小值 
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].minn;
	}
	ll tmp1 = INF,tmp2 = INF;
	if(pl <= tree[cur*2].r) tmp1 = qMin(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qMin(pl,pr,cur*2+1);
	return min(tmp1,tmp2);
}

ll qSum(int pl,int pr,int cur) {//查询区间和
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].val;
	}
	ll tmp1 = 0,tmp2 = 0;
	if(pl <= tree[cur*2].r) tmp1 = qMin(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qMin(pl,pr,cur*2+1);
	return tmp1+tmp2;
}
void update(int pl,int pr,ll val,int cur) {
	if(tree[cur].minn == 0) return ;
	if(tree[cur].l == tree[cur].r) {
		tree[cur].val%=val;
		tree[cur].minn%=val;
		return;
	}
	if(pl <= tree[cur*2].r) update(pl,pr,val,cur*2);
	if(pr >= tree[cur*2+1].l) update(pl,pr,val,cur*2+1);
	pushup(cur);
}
int main()
{
	int t;
	cin>>t;
	while(t--) {
		scanf("%d%d",&n,&q);
		for(int i = 1; i<=n; i++) {
			scanf("%lld",a+i);
		}
		build(1,n,1);
		while(q--) {
			int l,r;
			scanf("%d%d",&l,&r);
			ll tmp = qMin(l,r,1);
			ll ans1 = qSum(l,r,1);
			ll ans2;
			if(tmp == 0) ans2 = ans1;
			else {
				update(l,r,tmp,1);
				ans2 = qSum(l,r,1);
			} 
			printf("%lld %lld\n",ans1,ans2);
		}
	}
	return 0 ;
}

WA代码2::

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
const ll INF = 9223372036854775807;
int n,q;
ll a[MAX];
struct TREE {
	int l,r;
	ll val;//区间和 
	ll minn;
} tree[MAX<<2];
void pushup(int cur) {
	ll t1=tree[cur*2].minn;
	ll t2=tree[cur*2+1].minn;
	if(t1 == 0) tree[cur].minn = t2;
	else if(t2 == 0) tree[cur].minn = t1;
	else tree[cur].minn = min(t1,t2);
	tree[cur].val = tree[cur*2].val + tree[cur*2+1].val;
}
void build(int l,int r,int cur) {
	tree[cur].l = l,tree[cur].r = r;
	if(l == r) {
		tree[cur].minn = tree[cur].val = a[r];return;
	}
	int m = (l+r)>>1;
	build(l,m,cur*2);
	build(m+1,r,cur*2+1);
	pushup(cur);
}
ll qMin(int pl,int pr,int cur) {//查询区间最小值 
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].minn;
	}
	ll tmp1 = INF,tmp2 = INF;
	if(pl <= tree[cur*2].r) tmp1 = qMin(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qMin(pl,pr,cur*2+1);
	if(tmp1 == 0) return tmp2;
	if(tmp2 == 0) return tmp1;
	return min(tmp1,tmp2);
}

ll qSum(int pl,int pr,int cur) {//查询区间和
	if(pl <= tree[cur].l && pr >= tree[cur].r) {
		return tree[cur].val;
	}
	ll tmp1 = 0,tmp2 = 0;
	if(pl <= tree[cur*2].r) tmp1 = qMin(pl,pr,cur*2);
	if(pr >= tree[cur*2+1].l) tmp2 = qMin(pl,pr,cur*2+1);
	return tmp1+tmp2;
}
void update(int pl,int pr,ll val,int cur) {
	if(tree[cur].minn == 0) return ;
	if(tree[cur].l == tree[cur].r) {
		tree[cur].val%=val;
		tree[cur].minn%=val;
		return;
	}
	if(pl <= tree[cur*2].r) update(pl,pr,val,cur*2);
	if(pr >= tree[cur*2+1].l) update(pl,pr,val,cur*2+1);
	pushup(cur);
}
int main()
{
	int t;
	cin>>t;
	while(t--) {
		scanf("%d%d",&n,&q);
		for(int i = 1; i<=n; i++) {
			scanf("%lld",a+i);
		}
		build(1,n,1);
		while(q--) {
			int l,r;
			scanf("%d%d",&l,&r);
			ll tmp = qMin(l,r,1);
			ll ans1 = qSum(l,r,1);
			ll ans2;
			if(tmp == 0) ans2 = ans1;
			else {
				update(l,r,tmp,1);
				ans2 = qSum(l,r,1);
			} 
			printf("%lld %lld\n",ans1,ans2);
		}
	}
	return 0 ;
}

总结:

WA了好几发,,

首先RE因为没有开四倍。

1WA首先是没有所有的变量都开longlong,后来一个一个变量检查的。

2WA是INF设置的不够大,因为单个数据是1e13,而总共2e5个数,所以最大可能值是2e18,所以保险起见就设置INF为9e18好了。

3WA在求最小值的时候不太对,(也就是WA代码1那样写的)这样会导致只要有一个儿子节点的minn是0,就直接返回0了。

4WA在求最小值的时候不太对,因为这样有可能返回INF,比如左子树的minn是0,右子树的minn是2,那么应该返回 2,但是这样的话就返回INF了。。。

5WA在qSum的时候,,,里面递归竟然写成了qMin。。。我再也不复制粘贴了55555.

你可能感兴趣的:(线段树)