课程:
http://mesh.brown.edu/taubin/teaching.html
qt and c++
http://mesh.brown.edu/DGP/assignments.html
http://mesh.brown.edu/byo3d
http://mesh.brown.edu/DGP/coremesh/split.html
图形学初学者,如何学习Polygon Mesh Processing这本书?
https://www.zhihu.com/question/34735394/answer/126940209
http://threepark.net/dgp
https://i.youku.com/i/UNDQ4MzQ4MzYyMA==/videos?spm=a2hzp.8253876.0.0
https://i.youku.com/i/UNDQ4MzQ4MzYyMA==/videos?spm=a2hzp.8253876.0.0
http://blog.sina.com.cn/s/blog_79b67dfe0102zifi.html
http://geometryhub.net/notes/registration
http://geometryhub.net/notes/icp
点云配准算法和开源软件库
https://blog.csdn.net/qq_36812406/article/details/82700268
ICP点云配准原理及优化
https://www.cnblogs.com/fujj/p/9678657.html
Semantic 3D Reconstruction
https://blog.csdn.net/renhaofan/article/details/90319974
点云配准各种方法总结[不定时更新]
https://blog.csdn.net/Ha_ku/article/details/79755623
几种主要的点云配准算法和开源软件库
https://www.jianshu.com/p/98bff9e0f0b9
PointNet
https://blog.csdn.net/ha_ku/article/category/7817561
点云模型的优化配准方法研究
作者:赵夫群著
点云数据配准及曲面细分技术
薛耀红[等]编著
https://www.e-learn.cn/content/qita/2332639
ICP算法及其主要变形
Standard ICP
Besl, Paul J., and Neil D. McKay. "A method for registration of 3-D shapes." IEEE Transactions on pattern analysis and machine intelligence 14.2 (1992): 239-256.KD-tree Approximation
Greenspan, Michael, and Mike Yurick. "Approximate kd tree search for efficient ICP." 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on. IEEE, 2003.Soft Outlier Rejection
Rusinkiewicz, Szymon, and Marc Levoy. "Efficient variants of the ICP algorithm." 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001.Generalized-icp(GICP)
Segal, Aleksandr, Dirk Haehnel, and Sebastian Thrun. "Generalized-ICP." Robotics: science and systems. Vol. 2. No. 4. 2009.Normal ICP(NICP)
Serafin, Jacopo, and Giorgio Grisetti. "NICP: Dense normal based point cloud registration." Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015.Go-ICP
Yang, Jiaolong, et al. "Go-ICP: a globally optimal solution to 3D ICP point-set registration." IEEE transactions on pattern analysis and machine intelligence 38.11 (2016): 2241-2254.
ICP的几个开源库
slam6D
http://slam6d.sourceforge.net/libicp
http://www.cvlibs.net/software/libicp/libpointmatcher
https://github.com/ethz-asl/libpointmatcherg-icp
https://github.com/avsegal/gicpnicp
http://jacoposerafin.com/nicp/
NDT算法
2D-NDT
Biber, Peter, and Wolfgang Straßer. "The normal distributions transform: A new approach to laser scan matching." Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on. Vol. 3. IEEE, 2003.3D-NDT
Magnusson, Martin, Achim Lilienthal, and Tom Duckett. "Scan registration for autonomous mining vehicles using 3D‐NDT." Journal of Field Robotics 24.10 (2007): 803-827.
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
https://mp.weixin.qq.com/s/eNofskmSmwl8jH6BvNKfBg
PCL-ICP例子:
https://github.com/hyx007/paopao_ws/blob/master/icp_example/src/icp.h
https://github.com/hyx007/paopao_ws/blob/master/icp_example/src/icp_example.cpp
一分钟详解PCL中点云配准技术
https://www.jianshu.com/p/18d4270aad2a
Fast ICP算法进行点集或曲面配准解析
https://blog.csdn.net/viewcode/article/details/8426846
Deep Closest Point: Learning Representations for Point Cloud Registration
http://www.liuxiao.org/2019/08/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0%EF%BC%9Adeep-closest-point-learning-representations-for-point-cloud-registration/
使用 SVD 方法求解 ICP 问题
http://www.liuxiao.org/2019/08/%E4%BD%BF%E7%94%A8-svd-%E6%96%B9%E6%B3%95%E6%B1%82%E8%A7%A3-icp-%E9%97%AE%E9%A2%98/
Dynamic Graph CNN for Learning on Point Clouds
http://www.liuxiao.org/2019/07/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0%EF%BC%9Adynamic-graph-cnn-for-learning-on-point-clouds/
Globally consistent registration of terrestrial laser scans via graph Optimization
https://blog.csdn.net/tjm059/article/details/82988772
52 点云配准领域论文
https://www.cnblogs.com/ghjnwk/p/10475358.html
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
【泡泡点云时空】完美配准:具有平滑密度的3D点云配准
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
【泡泡点云时空】使用概率混合模型进行广义鲁棒点云配准(ICRA-1)
【泡泡点云时空】三维点云配准中多视角图像描述子的检测与匹配(ECCV2018-11)
4PCS点云粗配准算法介绍
【泡泡图灵智库】基于平移搜索匹配旋转不变特征的高效全局点云配准
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
【泡泡图灵智库】用于灾害响应的空地机器人三维配准:特征、描述符和变换估计的评估
【泡泡图灵智库】使用语义特征优化全景影像序列与移动激光点云的自动配准
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
【泡泡一分钟】点密度适应性点云配准
【泡泡点云时空】通过平移搜索匹配旋转不变特征的高效全局点云配准方法(ECCV2018-2)
【泡泡一分钟】基于模糊对应的稳健形状配准(3dv-24)
【泡泡点云时空】使用L1最小化空间和角度偏差的航空多模态数据尺度不变线配准
【泡泡点云时空】完美配准:具有平滑密度的3D点云配准
【泡泡点云时空】集成深度语义分割的3D点云配准
【泡泡图灵智库】基于局部差分信息的3D曲线曲面配准算法(ECCV)
【泡泡一分钟】基于隐式二次曲面交点的视觉特征点云配准(3dv-19)
【泡泡一分钟】精确的农田无人机图像的长期鲁棒配准
【泡泡一分钟】PRISM: 集成语义建图的位姿配准方法
【泡泡一分钟】基于叶状结构的表面配准(ICCV2017-98)
【泡泡点云时空】跟踪与三角测量中一种通过兴趣点网络进行多视图2D/3D刚性配准的方法
【泡泡点云时空】使用概率混合模型进行广义鲁棒点云配准(ICRA-1)
【泡泡一分钟】基于视点描述子字典在局部到全局点云配准中的应用(ICCV2017-82)
【泡泡一分钟】精确三维正态分布变换配准的协方差的动态尺度因子
【泡泡一分钟】基于均值偏移聚类方法的3D点云配准算法(3dv-49)
【泡泡一分钟】通过平移搜索匹配旋转不变特征的高效全局点云配准
【泡泡点云时空】3DFeat-Net:用于点云配准的弱监督学习的局部3D特征(ECCV2018-3)
【泡泡图灵智库】批量增量式运动恢复结构
【泡泡机器人翻译专栏】LSD-SLAM : 基于直接法的大范围单目即时定位和地图构建方法
【泡泡点云时空】DeepMapping: 来自多重点云的无监督地图估计
【泡泡点云时空】ICP算法的高效变种
Maplab:研究视觉惯性建图和定位的开源框架
【泡泡一分钟】三维对应分组算法性能评估(3dv-37)
【泡泡一分钟】AA-ICP:Anderson加速迭代最近点算法
http://mesh.brown.edu/taubin/publications.html
https://github.com/ethz-asl/libpointmatcher/blob/master/doc/index.md
http://www.pmavridis.com/research/efficiency_sparse_icp/
http://www.pmavridis.com/
https://github.com/ethz-asl/libpointmatcher
https://lgg.epfl.ch/publications/2014/sparseicp/paper.pdf
https://github.com/OpenGP/sparseicp
https://storm-irit.github.io/OpenGR
https://github.com/nmellado/Super4PCS
https://geometry.cs.ucl.ac.uk/projects/2014/super4PCS/
https://geometry.cs.ucl.ac.uk/projects/2014/super4PCS/super4pcs.pdf
ICP其他资料:
https://github.com/agnivsen/icp
https://github.com/ClayFlannigan/icp
https://github.com/YuePanEdward/GH-ICP
https://github.com/zjudmd1015/icp
求大神推荐一下关于ICP算法(最近点迭代算法)的相关书籍? - 知乎
https://www.zhihu.com/question/36525809
[LIDAR-SLAM] Iterative Closest Point (ICP)简单实现 - 知乎
https://zhuanlan.zhihu.com/p/63964953
迭代最近点(Iterative Closest Point, ICP)算法介绍 - 知乎
https://zhuanlan.zhihu.com/p/35893884
该如何学习三维点云配准的相关知识? - 知乎
https://www.zhihu.com/question/34170804/answer/121533317
一分钟详解PCL中点云配准技术 - 知乎
https://zhuanlan.zhihu.com/p/75485156
3D点云配准(二多幅点云配准) - 知乎
https://zhuanlan.zhihu.com/p/74966732
PCL入门-配准好用之NDT - 知乎
https://zhuanlan.zhihu.com/p/35095420
DCP: Deep Closest Point(点云匹配 ICCV 2019) - 知乎
https://zhuanlan.zhihu.com/p/89853866
花花 - 知乎
https://www.zhihu.com/people/hua-hua-29-2-59/activities
这可能是史上最全的 Python 算法集(建议收藏) - 知乎
https://zhuanlan.zhihu.com/p/60356696