CF1111E Tree 动态规划+LCT

这个题的思路非常好啊.    

我们可以把 $k$ 个点拿出来,那么就是求将 $k$ 个点划分成不大于 $m$ 个集合的方案数.   

令 $f[i][j]$ 表示将前 $i$ 个点划分到 $j$ 个集合中的方案数.  

那么有 $f[i][j]=f[i-1][j-1]+f[i-1][j]*(j-fail[i])$,其中 $fail[i]$ 代表 $i$ 到根这条路径上祖先数量.             

而 $fail[i]$ 的求解方式有:虚数统计/树上数据结构维护路径和,这里选择了用 LCT 来维护. 

code: 

#include  
#include  
#include 
#include   
#define N 100007   
#define ll long long 
#define mod 1000000007 
#define setIO(s) freopen(s".in","r",stdin) 
using namespace std;   
namespace LCT 
{    
    #define lson t[x].ch[0] 
    #define rson t[x].ch[1] 
    struct node 
    {
        int ch[2],f,rev,sum,val;       
    }t[N];     
    int sta[N];  
    int get(int x) 
    {
        return t[t[x].f].ch[1]==x; 
    }                                    
    int isrt(int x) 
    {
        return !(t[t[x].f].ch[0]==x||t[t[x].f].ch[1]==x); 
    }
    void pushup(int x) 
    {
        t[x].sum=t[lson].sum+t[rson].sum+t[x].val; 
    }  
    void mark(int x) 
    {  
        t[x].rev^=1; 
        swap(lson,rson);    
    }  
    void pushdown(int x) 
    { 
        if(t[x].rev) 
        {
            if(lson) mark(lson); 
            if(rson) mark(rson); 
            t[x].rev=0; 
        }
    }
    void rotate(int x) 
    {
        int old=t[x].f,fold=t[old].f,which=get(x);            
        if(!isrt(old)) t[fold].ch[t[fold].ch[1]==old]=x;  
        t[old].ch[which]=t[x].ch[which^1],t[t[old].ch[which]].f=old;  
        t[x].ch[which^1]=old,t[old].f=x,t[x].f=fold; 
        pushup(old),pushup(x); 
    }    
    void splay(int x) 
    { 
        int v=0,u=x,fa;           
        for(sta[++v]=u;!isrt(u);u=t[u].f) sta[++v]=t[u].f;            
        for(;v;--v) pushdown(sta[v]); 
        for(u=t[u].f;(fa=t[x].f)!=u;rotate(x)) 
        {
            if(t[fa].f!=u)
                rotate(get(fa)==get(x)?fa:x);  
        }
    }
    void Access(int x) 
    {
        for(int y=0;x;y=x,x=t[x].f) 
        {
            splay(x); 
            rson=y; 
            pushup(x);  
        }
    }
    void makeroot(int x) 
    {
        Access(x),splay(x),mark(x); 
    }   
    void split(int x,int y) 
    {
        makeroot(x),Access(y),splay(y);  
    }
    void add(int x,int v) 
    {
        Access(x),splay(x); 
        t[x].val+=v,pushup(x);        
    }
    int query(int x) 
    {           
        Access(x),splay(x);  
        return t[x].sum;   
    }
    #undef lson 
    #undef rson 
}; 
int n,edges; 
int hd[N],to[N<<1],nex[N<<1],f[N],A[N],dp[N][302];     
void add(int u,int v) 
{
    nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;    
}
void dfs(int u,int ff) 
{
    LCT::t[u].f=ff;  
    for(int i=hd[u];i;i=nex[i]) 
    {
        int v=to[i]; 
        if(v==ff) continue;  
        dfs(v,u); 
    }  
}
int main() 
{ 
    // setIO("input");      
    int i,j,q; 
    scanf("%d%d",&n,&q);  
    for(i=1;im) flag=1;             
        } 
        for(j=1;j<=k;++j)  LCT::add(A[j],-1); 
        if(flag)   printf("0\n"); 
        else 
        {        
            sort(f+1,f+1+k);    
            dp[1][1]=1;   
            for(j=2;j<=k;++j) 
            {      
                for(int p=1;p<=min(j,m);++p) 
                {
                    dp[j][p]=0; 
                    if(p

  

你可能感兴趣的:(CF1111E Tree 动态规划+LCT)