Powered by:AB_IN 局外人
while True:
try:
s=input()
cnt=0
if s[0].islower():
cnt+=1
for i in range(len(s)-1):
if s[i].isupper()==True and s[i+1].isupper()==True:
continue
if s[i].islower()==True and s[i+1].islower()==True:
continue
cnt+=1
print(cnt)
except:
break
#include
#pragma GCC optimize(2)
#pragma GCC optimize(3)
typedef unsigned long long ll;
const ll maxn=1e6;
using namespace std;
namespace IO{
char ibuf[1<<21],*ip=ibuf,*ip_=ibuf;
char obuf[1<<21],*op=obuf,*op_=obuf+(1<<21);
inline char gc(){
if(ip!=ip_)return *ip++;
ip=ibuf;ip_=ip+fread(ibuf,1,1<<21,stdin);
return ip==ip_?EOF:*ip++;
}
inline void pc(char c){
if(op==op_)fwrite(obuf,1,1<<21,stdout),op=obuf;
*op++=c;
}
inline int read(){
register int x=0,ch=gc(),w=1;
for(;ch<'0'||ch>'9';ch=gc())if(ch=='-')w=-1;
for(;ch>='0'&&ch<='9';ch=gc())x=x*10+ch-48;
return w*x;
}
template<class I>
inline void write(I x){
if(x<0)pc('-'),x=-x;
if(x>9)write(x/10);pc(x%10+'0');
}
class flusher_{
public:
~flusher_(){if(op!=obuf)fwrite(obuf,1,op-obuf,stdout);}
}IO_flusher;
}
ll a[maxn],n,m,t;
int main()
{
using namespace IO;
t=read();
while(t--){
n=read();
for(ll i=1;i<=n;i++) a[i]=read();
sort(a+1,a+n+1);
ll sum=0;
for(ll i=1;i<=n;i++) sum+=(n-i)*a[i];
printf("%.2lf\n",1.0*sum/n);
}
}
namespace IO{
char ibuf[1<<21],*ip=ibuf,*ip_=ibuf;
char obuf[1<<21],*op=obuf,*op_=obuf+(1<<21);
inline char gc(){
if(ip!=ip_)return *ip++;
ip=ibuf;ip_=ip+fread(ibuf,1,1<<21,stdin);
return ip==ip_?EOF:*ip++;
}
inline void pc(char c){
if(op==op_)fwrite(obuf,1,1<<21,stdout),op=obuf;
*op++=c;
}
inline int read(){
register int x=0,ch=gc(),w=1;
for(;ch<'0'||ch>'9';ch=gc())if(ch=='-')w=-1;
for(;ch>='0'&&ch<='9';ch=gc())x=x*10+ch-48;
return w*x;
}
template<class I>
inline void write(I x){
if(x<0)pc('-'),x=-x;
if(x>9)write(x/10);pc(x%10+'0');
}
class flusher_{
public:
~flusher_(){if(op!=obuf)fwrite(obuf,1,op-obuf,stdout);}
}IO_flusher;
}
const int maxn=100005;
这个读入输出可太快了。。。
用时就using namespace IO
即可,putchar
变成了pc
。
double
型的变量,一开始声明和之前变量相同的类型。到最后用printf("%lf",1.0*x)
输出,乘1.0转化成浮点型。找规律快速幂即可。
#include
typedef unsigned long long ll;
const ll mod=1e9+7;
using namespace std;
namespace IO{
char ibuf[1<<21],*ip=ibuf,*ip_=ibuf;
char obuf[1<<21],*op=obuf,*op_=obuf+(1<<21);
inline char gc(){
if(ip!=ip_)return *ip++;
ip=ibuf;ip_=ip+fread(ibuf,1,1<<21,stdin);
return ip==ip_?EOF:*ip++;
}
inline void pc(char c){
if(op==op_)fwrite(obuf,1,1<<21,stdout),op=obuf;
*op++=c;
}
inline int read(){
register int x=0,ch=gc(),w=1;
for(;ch<'0'||ch>'9';ch=gc())if(ch=='-')w=-1;
for(;ch>='0'&&ch<='9';ch=gc())x=x*10+ch-48;
return w*x;
}
template<class I>
inline void write(I x){
if(x<0)pc('-'),x=-x;
if(x>9)write(x/10);pc(x%10+'0');
}
class flusher_{
public:
~flusher_(){if(op!=obuf)fwrite(obuf,1,op-obuf,stdout);}
}IO_flusher;
}
ll quickmod (ll a, ll b ,ll c)
{
ll ret=1%c;
while(b){
if(b&1)
ret=ret*a%c;
a=a*a%c;
b=b>>1;
}
return ret;
}
ll t,n;
int main()
{
using namespace IO;
t=read();
while(t--){
n=read();
write(1ll*quickmod(2,n-1,mod)*n%mod);pc('\n');
}
return 0;
}
也是找规律的题。
t=int(input())
while t>0:
t-=1
n,a,b=map(int,input().strip().split())
if not n&1:
print("ALL")
elif a&1:
print("UP")
else:
print("DOWN")
完结。