- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 斯坦福CS229机器学习笔记-Lecture2-线性回归+梯度下降+正规方程组
Teeyohuang
机器学习CS229-吴恩达机器学习笔记CS229吴恩达机器学习
声明:此系列博文根据斯坦福CS229课程,吴恩达主讲所写,为本人自学笔记,写成博客分享出来博文中部分图片和公式都来源于CS229官方notes。CS229的视频和讲义均为互联网公开资源Lecture2这一节主要讲的是三个部分的内容:·LinearRegression(线性回归)·GradientDescent(梯度下降)·NormalEquations(正规方程组)1、线性回归首先给了一个例子,如
- 机器学习笔记 周志华 第一章绪论
Olivia_ll
learningnotemachinelearningmachinelearning
概念和术语属性空间(attributespace)/样本空间(samplespace)/输入空间:属性张成的空间特征向量(featurevector):一个示例标记(label):关于示例结果的信息样例(example):拥有了标记信息的示例标记空间(labelspace)/输出空间:所有标记的集合监督学习(supervisedlearning)分类(classification)——预测离散值回
- 机器学习笔记【Week6】
kuiini
人工智能机器学习人工智能
一、模型结果下一步训练模型得到结果后,常面临:模型性能不理想,下一步如何改进?通过对训练误差和验证误差的观察,判断是高偏差(欠拟合)还是高方差(过拟合)。一般步骤:计算训练误差和验证误差,不包含正则项。判断两者的大小和差距。根据判断选择策略:情况训练误差验证误差结论改进方向欠拟合(高偏差)高高模型能力不足增加特征,减小正则化过拟合(高方差)低高泛化能力差增加训练数据,增加正则化二、评估假设的误差训
- 机器学习笔记:时域和频域变换
灰暗世界%
机器学习笔记机器学习笔记人工智能
加窗操作使用内置的STFT/ISTFT接口这种方法利用torch.stft(内部采用rfft)和torch.istft完成变换,同时借助加窗(例如Hann窗)保证帧内加窗并采用重叠相加(常用50%重叠)实现完美重构。窗口长度可以灵活设置,例如64或32。这种方式利用了PyTorch内置的STFT与ISTFT函数,它们内部使用了rfft/irfft,同时支持加窗并且能够保证重构出的信号长度与输入一致
- 机器学习笔记——特征工程
好评笔记
机器学习人工智能深度学习AIGC算法岗校招实习
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC深度学习人工智能计算机视觉机器学习transformer论文阅读
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- Meta的AIGC视频生成模型——Emu Video
好评笔记
AIGC深度学习人工智能机器学习transformer校招面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- Python机器学习笔记(二十五、算法链与管道)
FreedomLeo1
Python机器学习机器学习算法pythonmake_pipelinePipelinenamed_steps属性
对于许多机器学习算法,特定数据表示非常重要。首先对数据进行缩放,然后手动合并特征,再利用无监督机器学习来学习特征。因此,大多数机器学习应用不仅需要应用单个算法,而且还需要将许多不同的处理步骤和机器学习模型链接在一起。Pipeline类可以用来简化构建变换和模型链的过程。将Pipeline和GridSearchCV结合起来,可以同时搜索所有处理步骤中的参数。举例:使用MinMaxScaler对can
- Python机器学习笔记(二十三 模型评估与改进-网格搜索)
FreedomLeo1
Python机器学习机器学习python支持向量机交叉验证网格搜索scikit-learn
上一次学习了评估一个模型的泛化能力,现在继续学习通过调参来提升模型的泛化性能。scikit-learn中许多算法的参数设置,在尝试调参之前,重要的是要理解参数的含义。找到一个模型的重要参数(提供最佳泛化性能的参数)的取值是一项棘手的任务,但对于几乎所有模型和数据集来说都是必要的。scikit-learn中有一些标准方法可以帮我们完成调参。最常用的方法就是网格搜索(gridsearch),它主要是指
- 吴恩达机器学习笔记:特征与多项式回归
ちゆきー
机器学习笔记回归
1.特征和多项式回归如房价预测问题,ℎθ(x)=θ0+θ1×frontage+θ2×deptℎx1=frontage(临街宽度),x2=deptℎ(纵向深度),x=frontage∗deptℎ=area(面积),则:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方
- 吴恩达机器学习笔记:多维梯度下降实践
ちゆきー
机器学习笔记计算机视觉
1.特征放缩在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如
- 吴恩达机器学习笔记:监督学习
ちゆきー
机器学习笔记学习
1.回归我们用一个例子介绍什么是监督学习把正式的定义放在后面介绍。假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。我们应用学习算法,可以在这组数据中画一条
- 大连理工大学选修课——机器学习笔记(7):集成学习及随机森林
江安的猪猪
大连理工大学选修:机器学习机器学习笔记集成学习
集成学习及随机森林集成学习概述泛化能力的局限每种学习模型的能力都有其上限限制于特定结构受限于训练样本的质量和规模如何再提高泛化能力?研究新结构扩大训练规模提升模型的泛化能力创造性思路组合多个学习模型集成学习集成学习不是特定的学习模型,而实一种构建模型的思路,一种训练学习的思想强可学习和弱可学习强可学习:对于一个概念或者一个类,如果存在一个多项式学习算法可以学习它,正确率高,则该概念是强可学习的。弱
- 机器学习笔记:python中使用sklearn的linear_model回归预测
代码先觉
pythonpythonsklearn
fromsklearnimportlinear_model#LinearRegression拟合一个带有系数w=(w_1,...,w_p)的线性模型,#使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。reg=linear_model.LinearRegression()reg.fit([[0,0],[1,2],[2,4]],[0,1,2])print(reg.coef_)print
- 机器学习笔记 图像特征提取器(卷积变体)的技术发展与演变
坐望云起
深度学习从入门到精通机器学习笔记人工智能
一、图像特征提取器简述图像特征提取器是可用于从图像中学习表示的函数或模块。最常见的特征提取器类型是卷积,其中内核在图像上滑动,允许参数共享和平移不变性。在深度学习技术的快速发展过程中,基于卷积也演变出来了若干新技术由于图像特征的提取,这里进行了一下简单梳理,一是加强了解,二是备忘。下面的清单每项都只是一个概念,因为每个概念都产生了若干论文。1、卷积卷积是一种矩阵运算,由一个内核组成,一个小的权重矩
- 机器学习笔记 - labelme标注工具使用
坐望云起
深度学习从入门到精通python机器学习labelme
简介在自己的数据集上进行语义分割最基础的一步便是对图像进行标注,以训练得到自己的模型,标注是一个比较繁琐的活,所以需要一个好的标注工具。MIT推出一个很多人都使用的labelme开源的LabelMe的目标是提供一个在线注释工具,以建立用于计算机视觉研究的图像数据库。官方地址:LabelMe.TheOpenannotationtoolMIT的这个貌似需要用到matlab,有兴趣的可以自行看看,我们这
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- 机器学习笔记 - 监督学习备忘清单
坐望云起
深度学习从入门到精通监督学习线性模型支持向量机生成学习集成方法
一、监督学习简介给定一组数据点关联到一组结果,我们想要构建一个分类器,学习如何从预测。1、预测类型下表总结了不同类型的预测模型:2、模型类型下表总结了不同的模型:
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- 深度学习笔记——pytorch构造数据集 Dataset and Dataloader
旺仔喔喔糖
机器学习笔记pytorch人工智能深度学习
系列文章目录机器学习笔记——梯度下降、反向传播机器学习笔记——用pytorch实现线性回归机器学习笔记——pytorch实现逻辑斯蒂回归Logisticregression机器学习笔记——多层线性(回归)模型Multilevel(LinearRegression)Model深度学习笔记——pytorch构造数据集DatasetandDataloader深度学习笔记——pytorch解决多分类问题M
- 机器学习笔记20241017
tt555555555555
学习笔记深度学习机器学习笔记人工智能
文章目录torchvisiondataloadernn.module卷积非线性激活模型选择训练误差泛化误差正则化权重衰退的基本概念数学表示权重衰退的效果物理解释数值稳定性(GradientVanishing)梯度消失原因解决方法梯度爆炸(GradientExplosion)定义原因解决方法总结继续跟着小土堆学pytorchtorchvision#导入torchvision库,主要用于处理图像数据集
- 机器学习笔记——正则化
好评笔记
补档机器学习人工智能论文阅读AIGC计算机视觉深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。文章目录正则化L1正则化(Lasso)原理使用场景优缺点L2正则化(Ridge)原理使用场景优缺点ElasticNet正则化定义公式优点缺点应用场景Dropout原理使用场景优缺点早停法(EarlyStopping)原理使用场景优缺点BatchNormalization(BN)原理使用
- 机器学习笔记——特征工程、正则化、强化学习
好评笔记
机器学习笔记机器学习人工智能AIAI编程算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri