[第七届蓝桥杯省赛C++B组]最大比例

来源:第七届蓝桥杯省赛C++B组

算法标签:数论,最大公约数,辗转相减法

题目描述:

X星球的某个大奖赛设了 M 级奖励。

每个级别的奖金是一个正整数。

并且,相邻的两个级别间的比例是个固定值。

也就是说:所有级别的奖金数构成了一个等比数列。

比如:16,24,36,54,其等比值为:3/2。

现在,我们随机调查了一些获奖者的奖金数。

请你据此推算可能的最大的等比值。

输入格式

第一行为数字 N ,表示接下的一行包含 N 个正整数。

第二行 N 个正整数 Xi,用空格分开,每个整数表示调查到的某人的奖金数额。

输出格式

一个形如 A/B 的分数,要求 A、B 互质,表示可能的最大比例系数。

数据范围

0 0 数据保证一定有解。

输入样例1:

3
1250 200 32

输出样例1:

25/4

输入样例2:

4
3125 32 32 200

输出样例2:

5/2

输入样例3:

3
549755813888 524288 2

输出样例3:

4/1

思路

我们要找一个数列的最大的等比值。
这种感觉和等差数列很相似,我们直接往GCD上靠

由于一串数据,排序之后肯定存在等差q

s= s1,  s2  , s3    ...sq   ... sn
s= aq^0,aq^1, aq^2	...a^q^k....aq^n

每个位次上都可以转换为[p/q]^w形式,即si=[s/a0,s/ai]^k
存在公比形如[p/q]^k
因为[p/q]^k>0,要使得整体最大则公比系数最大,则求K最大

k的限制条件
[p/q]^w是[p/q]^k的次幂
[p/q]^w=([p/q]^k)^s=[p/q]^k^s
则k是每一个w的约数
k最大就是wi的最大公约数

状如[p/q]^wi
我们现在转向了求每一个wi的最大公约数

[p/q]^k = [p^k/q^k]
我们可以直接求取分子分母
则分别求分子分母指数最大公约数

关于辗转相减求指数最大公约数

题目代码

#include
#include


using namespace std;

typedef long long LL;

const int N=110;

int n;
LL x[N],a[N],b[N];

LL gcd(LL a,LL b)//辗转相除
{
    return b?gcd(b,a%b):a;
}

LL gcd_sub(LL a,LL b)//辗转相减
{
    if(b>a)swap(a,b);
    if(b==1)return a;
    return gcd_sub(b,a/b);
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)cin>>x[i];//读入
    
    sort(x,x+n);
    
    LL dd=0;
    int cnt =0;
    for(int i=1;i<n;i++)
    {
        if(x[i]!=x[i-1])//去重
        {
            dd =gcd(x[i],x[0]);//最大公约数
            a[cnt] = x[i]/dd;
            b[cnt] = x[0]/dd;
            cnt++;
        }
    }
    
    LL up = a[0],down = b[0];//up分子 down分母
    for(int i=1;i<cnt;i++)//分开求分子分母的指数最大公约数
    {
        up = gcd_sub(up,a[i]);
        down = gcd_sub(down,b[i]);
    }
    
    cout<<up<<"/"<<down;
    
    return 0;
}

你可能感兴趣的:(蓝桥杯)