使用的数据清单如下:
1)拟合数据:https://github.com/InkiInki/data/blob/master/test/linear_regression.txt
代码示例:
function [] = test()
%%载入数据
data = importdata('linear_regression.txt');
%%
x = data( : , 1);
y = data( : , 2);
f = polyfit(x, y, 10); %多项式拟合, 10为设置的多项式系数
xi = min(x) : 0.02 : max(x);
yi = polyval(f, xi); %计算多项式的值
plot(xi, yi, x, y, 'r*');
end
假设已经知道待拟合数据的函数形式,例如 y = a x + s i n ( x ) ∗ e b x + c y = ax + sin(x) * e^{bx} + c y=ax+sin(x)∗ebx+c,则示例代码如下:
function [] = test()
%%载入数据
data = importdata('linear_regression.txt');
x = data( : , 1);
y = data( : , 2);
%%
%已知函数,示例顺序为:函数, 'independent', 自变量名,'coefficients', {变量名};
f = fittype('a * x + sin(x) * exp(b * x) + c', 'independent', 'x', 'coefficients', {'a', 'b', 'c'});
cfun = fit(x, y, f, 'StartPoint', [0, 0, 0]) % 展示拟合函数;
xi = min(x) : 0.02 : max(x);
yi = cfun(xi); %计算多项式的值
plot(xi, yi, 'b-', x, y, 'r*');
end
General model:
cfun(x) = a * x + sin(x) * exp(b * x) + c
Coefficients (with 95% confidence bounds):
a = 0.516 (0.2902, 0.7418)
b = 0.3105 (0.1212, 0.4998)
c = 3.026 (2.977, 3.074)
1)导入需要使用到的数据,例如:
>> data = importdata('linear_regression.txt');
>> x = data( : , 1);
>> y = data( : , 2);
2)命令窗口输入cftool,出现以下界面:
3)进行相应选取即可:
1)下表给出某地区1971-2000年的人口数据:
2)在matlab中的表示如下:
t = 1 : 30;
y = [33815, 33981, 34004, 34165, 34212, 34327, 34344, 34458, 34498, 34476, 34483, 34488, 34513, 34497, 34511, 34520, 34507, 34509, 34521, 34513, 34515, 34517, 34519, 34519, 34521, 34521, 34523, 34525, 34525, 34527];
3)绘制如下:
y = 1 a + b e − t y = \frac{1}{a + b e^{-t}} y=a+be−t1
5)令 y ′ = 1 y y' = \frac{1}{y} y′=y1, x ′ = e − t x' = e^{-t} x′=e−t,将其转化为直线模型:
y ′ = a + b x ′ y' = a + bx' y′=a+bx′
6)代码如下:
function [] = test()
%% 载入数据
T = 1 : 30;
Y = [33815, 33981, 34004, 34165, 34212, 34327, 34344, 34458, 34498, 34476, 34483, 34488, 34513, 34497, 34511, 34520, 34507, 34509, 34521, 34513, 34515, 34517, 34519, 34519, 34521, 34521, 34523, 34525, 34525, 34527];
len = size(T, 2);
%% 线性化处理
for t = 1 : len
x(t) = exp(-t);
y(t) = 1 / Y(t);
end
%% 计算回归系数B
c = ones(len, 1);
X = [c, x'];
B = inv(X' * X) * X' * y'
%%
temp = sum(y) / len;
for i = 1 : len
z(i) = B(1, 1) + B(2, 1) * x(i); % 计算回归拟合值
s(i) = y(i) - temp; % 计算离差
w(i) = z(i) - y(i); % 计算误差
end
%%
S = s * s'; % 计算离差平方和S
Q = w * w'; % 计算误差平方和Q
U = S - Q; % 计算回归平方和U
F = (len - 2) * U / Q % 计算并输出F检验值
for i = 1 : len
Y(i) = 1 / (B(1, 1) + B(2, 1) * exp(-i));
end
plot(T, Y);
end
7)输入如下:
B =
1.0e-04 *
0.2902
0.0182
F =
47.8774
1)以下给出浓度表 (题目略):
t j / s t_j / s tj/s | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|---|---|---|---|---|
C j / ( m g ⋅ c m − 3 ) C_j / (mg \cdot cm^{-3}) Cj/(mg⋅cm−3) | 4.54 | 4.99 | 5.35 | 5.65 | 5.90 | 6.10 | 6.26 | 6.39 | 6.50 | 6.59 |
2)以下给出极小化函数:
E ( K , a A , a B ) = ∑ j = 1 10 [ a + b e − 0.02 K t j − C j ] 2 E (K, a_{A}, a_B) = \sum_{j = 1}^{10} [a + b e^{-0.02 K t_j} - C_j]^2 E(K,aA,aB)=j=1∑10[a+be−0.02Ktj−Cj]2
3)代码示例如下:
function [] = test()
f = @(x, t)x(1) + x(2) * exp(-0.02 * x(3) * t);
t = linspace(100, 1000, 10);
c = 1e-5 * [454, 499, 535, 565, 590, 610, 626, 639, 650, 659];
x0 = [0, 0, 0]; % 初始值
x = lsqcurvefit(f, x0, t, c) % lsqcurvefit为非线性拟合函数
f = f(x, t)
plot(t, c, 'r*', t, f, '-')
end
x =
0.0017 0.0029 -0.0308
f =
0.0047 0.0049 0.0051 0.0053 0.0056 0.0058 0.0061 0.0064 0.0067 0.0070
参考文献:
[1]:MATLAB在数学建模中的应用,卓金武等。