8月15日自学同济版高数笔记(第一章第5~6节))

第一章第5节 极限的运算法则

定理1

两个无穷小的和是无穷小

定理2

有界函数与无穷小的乘积是无穷小

推论1
常数与无穷小的乘积是无穷小

推论2
有限个无穷小的乘积是无穷小

定理3

如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A,\lim g(x)=B limf(x)=A,limg(x)=B,那么
( 1 ) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B (1)\lim [f(x)±g(x)]=\lim f(x)±\lim g(x)=A±B (1)lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
( 2 ) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B (2)\lim [f(x)·g(x)]=\lim f(x)·\lim g(x)=A·B (2)lim[f(x)g(x)]=limf(x)limg(x)=AB
( 3 ) (3) (3)若又有 B ≠ 0 B≠0 B=0,则
lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA

推论1
如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,而 c c c为常数,那么
lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)

推论2
如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,而 n n n是正整数,那么
lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim [f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n

定理4

设有数列 { x n } , { y n } \{x_n\},\{y_n\} {xn}{yn},如果
lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ y n = B \displaystyle\lim_{n\rightarrow\infty}x_n=A,\displaystyle\lim_{n\rightarrow\infty}y_n=B nlimxn=Anlimyn=B
那么
( 1 ) lim ⁡ n → ∞ ( x n ± y n ) = A ± B (1)\displaystyle\lim_{n\rightarrow\infty}(x_n±y_n)=A±B (1)nlim(xn±yn)=A±B
( 2 ) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B (2)\displaystyle\lim_{n\rightarrow\infty}(x_n·y_n)=A·B (2)nlim(xnyn)=AB
( 3 ) (3) (3) y n ≠ 0 ( n = 1 , 2 , . . . ) y_n≠0(n=1,2,...) yn=0(n=1,2,...) B ≠ 0 B≠0 B=0时, lim ⁡ n → ∞ x n y n = A B \displaystyle\lim_{n\rightarrow\infty}\frac{x_n}{y_n}=\frac{A}{B} nlimynxn=BA

定理5

如果 φ ( x ) ≥ ψ ( x ) \varphi(x)\geq\psi(x) φ(x)ψ(x),而 lim ⁡ φ ( x ) = A , lim ⁡ ψ ( x ) = B , \lim\varphi(x)=A,\lim \psi(x)=B, limφ(x)=Alimψ(x)=B那么 A ≥ B A\geq B AB

lim ⁡ x → ∞ sin ⁡ x x \displaystyle\lim_{x\rightarrow\infty}\frac{\sin x}{x} xlimxsinx

因为 lim ⁡ x → ∞ sin ⁡ x x = lim ⁡ x → ∞ ( sin ⁡ x ⋅ 1 x ) \displaystyle\lim_{x\rightarrow\infty}\frac{\sin x}{x}=\displaystyle\lim_{x\rightarrow\infty}(\sin x·\frac{1}{x}) xlimxsinx=xlim(sinxx1)
因为 lim ⁡ x → ∞ 1 x = 0 \displaystyle\lim_{x\rightarrow\infty}\frac{1}{x}=0 xlimx1=0
sin ⁡ x \sin x sinx是有界函数
根据本节定理2,有:
lim ⁡ x → ∞ sin ⁡ x x = lim ⁡ x → ∞ ( sin ⁡ x ⋅ 1 x ) = 0 \displaystyle\lim_{x\rightarrow\infty}\frac{\sin x}{x}=\displaystyle\lim_{x\rightarrow\infty}(\sin x·\frac{1}{x})=0 xlimxsinx=xlim(sinxx1)=0

定理6(复合函数的极限运算法则)

设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)符合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在点 x 0 x_0 x0的某去心领域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \displaystyle\lim_{x\rightarrow x_0}g(x)=u_0,\displaystyle\lim_{u\rightarrow u_0}f(u)=A xx0limg(x)=u0uu0limf(u)=A,且存在 δ 0 > 0 \delta_0>0 δ0>0,当 x ∈ U ˚ ( x 0 , δ o ) x∈\mathring U(x_0,\delta_o) xU˚(x0,δo)时,有 g ( x ) ≠ u 0 g(x)≠u_0 g(x)=u0,则
lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \displaystyle\lim_{x\rightarrow x_0}f[g(x)]=\displaystyle\lim_{u\rightarrow u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

第6节 极限存在准则 两个重要极限

准则I

如果数列 { x n } , { y n } , { z n } \{x_n\},\{y_n\},\{z_n\} {xn}{yn}{zn}满足下列条件:
( 1 ) (1) (1)从某项起,即 ∃ n 0 ∈ N + \exist n_0∈N_+ n0N+,当 n > n 0 n>n_0 n>n0时,有
y n ≤ x n ≤ z n y_n\leq x_n\leq z_n ynxnzn
( 2 ) lim ⁡ y → ∞ = a , lim ⁡ z → ∞ = a (2)\displaystyle\lim_{y\rightarrow\infty}=a,\displaystyle\lim_{z\rightarrow\infty}=a (2)ylim=azlim=a
那么数列 { x n } \{x_n\} {xn}的极限存在,且 lim ⁡ x → ∞ = a \displaystyle\lim_{x\rightarrow\infty}=a xlim=a

准则I ′ '

如果
( 1 ) (1) (1) x ∈ U ˚ ( x 0 , r ) x∈\mathring U(x_0,r) xU˚(x0,r)(或 ∣ x ∣ > M |x|>M x>M)时,
g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\leq f(x)\leq h(x) g(x)f(x)h(x)
( 2 ) lim ⁡ x → x 0 ( x → ∞ ) g ( x ) = A , lim ⁡ x → x 0 ( x → ∞ ) h ( x ) = A (2)\displaystyle\lim_{x\rightarrow x_0(x\rightarrow\infty)}g(x)=A,\displaystyle\lim_{x\rightarrow x_0(x\rightarrow\infty)}h(x)=A (2)xx0(x)limg(x)=Axx0(x)limh(x)=A
那么 lim ⁡ x → x 0 ( x → ∞ ) f ( x ) \displaystyle\lim_{x\rightarrow x_0(x\rightarrow\infty)}f(x) xx0(x)limf(x)存在,且等于 A A A

准则I及准则I ′ ' 称为夹逼准则

证明: lim ⁡ x → 0 cos ⁡ x = 1 \displaystyle\lim_{x\rightarrow 0}\cos x=1 x0limcosx=1
证:当 0 < ∣ x ∣ < π 2 0<|x|<\frac{\pi}{2} 0<x<2π时,
0 < ∣ c o s x − 1 ∣ = 1 − cos ⁡ x = 2 sin ⁡ 2 x 2 < 2 ( x 2 ) 2 = x 2 2 0<|cosx-1|=1-\cos x=2\sin^2\frac{x}{2}<2(\frac{x}{2})^2=\frac{x^2}{2} 0<cosx1=1cosx=2sin22x<2(2x)2=2x2(因为 sin ⁡ x < x \sin xsinx<x

0 < 1 − cos ⁡ x < x 2 2 0<1-\cos x<\frac{x^2}{2} 0<1cosx<2x2
x → 0 x\rightarrow 0 x0时, x 2 2 → 0 \frac{x^2}{2}\rightarrow 0 2x20,由准则I ′ '
lim ⁡ x → 0 1 − cos ⁡ x = 0 \displaystyle\lim_{x\rightarrow 0}1-\cos x=0 x0lim1cosx=0
所以 lim ⁡ x → 0 cos ⁡ x = 1 \displaystyle\lim_{x\rightarrow 0}\cos x=1 x0limcosx=1

证明: lim ⁡ x → 0 sin ⁡ x x = 1 \displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1 x0limxsinx=1
证明:
8月15日自学同济版高数笔记(第一章第5~6节))_第1张图片
因为
△ A O B △AOB AOB的面积 < < <扇形 A O B AOB AOB的面积 < △ A O D <△AOD <AOD的面积
所以
1 2 sin ⁡ x < 1 2 x < 1 2 tan ⁡ x \frac{1}{2}\sin x<\frac{1}{2}x<\frac{1}{2}\tan x 21sinx<21x<21tanx

cos ⁡ x < sin ⁡ x x < 1 \cos x<\frac{\sin x}{x}<1 cosx<xsinx<1
因为 lim ⁡ x → 0 cos ⁡ x = 1 , \displaystyle\lim_{x\rightarrow 0}\cos x=1, x0limcosx=1由准则I ′ ' 有:
lim ⁡ x → 0 sin ⁡ x x = 1 \displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}=1 x0limxsinx=1

lim ⁡ x → 0 tan ⁡ x x \displaystyle\lim_{x\rightarrow 0}\frac{\tan x}{x} x0limxtanx
lim ⁡ x → 0 tan ⁡ x x = lim ⁡ x → 0 ( sin ⁡ x x ⋅ 1 cos ⁡ x ) = lim ⁡ x → 0 sin ⁡ x x ⋅ lim ⁡ x → 0 1 cos ⁡ x = 1 \displaystyle\lim_{x\rightarrow 0}\frac{\tan x}{x}=\displaystyle\lim_{x\rightarrow 0}(\frac{\sin x}{x}·\frac{1}{\cos x})=\displaystyle\lim_{x\rightarrow 0}\frac{\sin x}{x}·\displaystyle\lim_{x\rightarrow 0}\frac{1}{\cos x}=1 x0limxtanx=x0lim(xsinxcosx1)=x0limxsinxx0limcosx1=1

准则II(单调有界数列必有极限)

如果数列 { x n } \{x_n\} {xn}满足条件
x 1 ≤ x 2 ≤ x 3 ≤ . . . ≤ x n ≤ x n + 1 ≤ . . . x_1\leq x_2\leq x_3\leq...\leq x_n\leq x_{n+1}\leq ... x1x2x3...xnxn+1...
就称数列 { x n } \{x_n\} {xn}单调增加
如果数列 { x n } \{x_n\} {xn}满足条件
x 1 ≥ x 2 ≥ x 3 ≥ . . . ≥ x n ≥ x n + 1 ≥ . . . x_1\geq x_2\geq x_3\geq...\geq x_n\geq x_{n+1}\geq ... x1x2x3...xnxn+1...
就称数列 { x n } \{x_n\} {xn}单调减少

结合准则II牛顿二项公式(待补)可证明:

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \displaystyle\lim_{x\rightarrow \infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e

准则II ′ '

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某个左邻域内单调并且有界,则 f ( x ) f(x) f(x) x 0 x_0 x0的左极限 f ( x 0 − ) f(x_0^-) f(x0)必定存在

柯西极限存在准则(有时也叫做柯西审敛原理

数列 { x n } \{x_n\} {xn}收敛的充分必要条件是:对于任意给定的正数 ε \varepsilon ε,存在正整数 N N N,使得当 m > N , n > N m>N,n>N m>Nn>N时,有
∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon xnxm<ε

你可能感兴趣的:(同济版高数自学预习)