三,binder场景分析
写完SampleService,我们已经有一些基本概念了,下面我们通过一些场景的分析来理解一下整个binder的实现架构。
在这部分首先了解下/dev/binder的驱动,分析ServiceManager的实现,然后我们分几个具体的场景来分析:
在这部分,大多数时候,我们都会逐行分析代码,为了方便会把注释直接加在对应的代码上,如下面的例子:
//记录了BINDER_STAT_PROC的object建立了多少,这个是为了debug问题而记录的
binder_stats_created(BINDER_STAT_PROC);
//binder_procs是一个全局变量,hlist_add_head是将proc->proc_node加入binder_procs的list中,实际将当前的binder_proc加入了list。
hlist_add_head(&proc->proc_node, &binder_procs);
PS:在这部分内容中,binder特指kernel中的/dev/binder。
3.1 /dev/binder
binder device是android写的一个虚拟的设备,他的驱动实现在common/driver/staging/android/binder.c中,对于linux驱动编写不了解的话,问题也不是很大,我们只要知道上层的操作下来具体到了binder中的哪个执行函数即可,其他不了解的api,只需要google一下就清楚了(本人也只是了解些皮毛而已)。
static const struct file_operations binder_fops = {
.owner = THIS_MODULE,
.poll = binder_poll,
.unlocked_ioctl = binder_ioctl,
.mmap = binder_mmap,
.open = binder_open,
.flush = binder_flush,
.release = binder_release,
};
static struct miscdevice binder_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "binder",
.fops = &binder_fops
};
我们只要知道,binder的操作接口在binder_fops中定义了,后面我们遇到操作,直接找对应的函数即可。
3.2 ServiceMananger main函数分析
servicemanager是在一个单独的进程中的,他的main函数实现在frameworks/native/cmds/servicemanager/service_manager.c:
int main(int argc, char **argv)
{
struct binder_state *bs;
void *svcmgr = BINDER_SERVICE_MANAGER;
bs = binder_open(128*1024);
if (binder_become_context_manager(bs)) {
ALOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
svcmgr_handle = svcmgr;
binder_loop(bs, svcmgr_handler);
return 0;
}
main函数很短,主要是调用了三个函数,逐个看下。
binder_open(128*1024)
binder_open()实现在frameworks/natvie/cmds/servicemanager/binder.c中:
struct binder_state *binder_open(unsigned mapsize)
{
struct binder_state *bs;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return 0;
}
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
fprintf(stderr,"binder: cannot open device (%s)\n",
strerror(errno));
goto fail_open;
}
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
fprintf(stderr,"binder: cannot map device (%s)\n",
strerror(errno));
goto fail_map;
}
/* TODO: check version */
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return 0;
}
binder_open() in binder
/dev/binder open对应的是binder.c中binder_open函数:
static int binder_open(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc;
binder_debug(BINDER_DEBUG_OPEN_CLOSE, "binder_open: %d:%d\n",
current->group_leader->pid, current->pid);
//申请binder_proc的内存。
proc = kzalloc(sizeof(*proc), GFP_KERNEL);
if (proc == NULL)
return -ENOMEM;
//current是指向当前调用open()进程的task_struct指针,get_task_struct实际是atomic_inc(&(current)->usage),并不是给current赋值。
get_task_struct(current);
proc->tsk = current;
//todo是struct list_head,是kernel中链表的head,INIT_LIST_HEAD是初始化链表的动作。
INIT_LIST_HEAD(&proc->todo);
//wait是wait_queue_head_t,是linux的等待队列,init_waitqueue_head是初始化等待队列。
init_waitqueue_head(&proc->wait);
//记录当前进程的nice值也就是优先级。
proc->default_priority = task_nice(current);
binder_lock(__func__);
//记录了BINDER_STAT_PROC的object建立了多少,这个是为了debug问题而记录的。
binder_stats_created(BINDER_STAT_PROC);
//binder_procs是一个全局变量,hlist_add_head是将proc->proc_node加入binder_procs的list中,实际将当前的binder_proc加入了list
hlist_add_head(&proc->proc_node, &binder_procs);
proc->pid = current->group_leader->pid;
//建立delivered_death的list。
INIT_LIST_HEAD(&proc->delivered_death);
filp->private_data = proc;
binder_unlock(__func__);
if (binder_debugfs_dir_entry_proc) {
char strbuf[11];
snprintf(strbuf, sizeof(strbuf), "%u", proc->pid);
proc->debugfs_entry = debugfs_create_file(strbuf, S_IRUGO,
binder_debugfs_dir_entry_proc, proc, &binder_proc_fops);
}
return 0;
}
这个函数主要是初始化了binder_proc这个class,具体的行为在代码中已经注释了。
binder_mmap() in binder
mmap函数主要是调用到binder_mmap()这个函数:
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)
{
int ret;
struct vm_struct *area;
struct binder_proc *proc = filp->private_data;
const char *failure_string;
struct binder_buffer *buffer;
if (proc->tsk != current)
return -EINVAL;
if ((vma->vm_end - vma->vm_start) > SZ_4M)
vma->vm_end = vma->vm_start + SZ_4M;
binder_debug(BINDER_DEBUG_OPEN_CLOSE,
"binder_mmap: %d %lx-%lx (%ld K) vma %lx pagep %lx\n",
proc->pid, vma->vm_start, vma->vm_end,
(vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags,
(unsigned long)pgprot_val(vma->vm_page_prot));
if (vma->vm_flags & FORBIDDEN_MMAP_FLAGS) {
ret = -EPERM;
failure_string = "bad vm_flags";
goto err_bad_arg;
}
vma->vm_flags = (vma->vm_flags | VM_DONTCOPY) & ~VM_MAYWRITE;
mutex_lock(&binder_mmap_lock);
if (proc->buffer) {
ret = -EBUSY;
failure_string = "already mapped";
goto err_already_mapped;
}
//从kernel vm区域,获取一块同样大小的空间,这块地址是可以在kernel访问的。
area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP);
if (area == NULL) {
ret = -ENOMEM;
failure_string = "get_vm_area";
goto err_get_vm_area_failed;
}
//记录mmap内存的vm地址。
proc->buffer = area->addr;
//两个内存的Offset,这个是为了方便后续的做user空间和kernel空间的地址转换。
proc->user_buffer_offset = vma->vm_start - (uintptr_t)proc->buffer;
mutex_unlock(&binder_mmap_lock);
#ifdef CONFIG_CPU_CACHE_VIPT
if (cache_is_vipt_aliasing()) {
while (CACHE_COLOUR((vma->vm_start ^ (uint32_t)proc->buffer))) {
pr_info("binder_mmap: %d %lx-%lx maps %p bad alignment\n", proc->pid, vma->vm_start, vma->vm_end, proc->buffer);
vma->vm_start += PAGE_SIZE;
}
}
#endif
//按照mmap的size,分配保存page指针的内存。
proc->pages = kzalloc(sizeof(proc->pages[0]) * ((vma->vm_end - vma->vm_start) / PAGE_SIZE), GFP_KERNEL);
if (proc->pages == NULL) {
ret = -ENOMEM;
failure_string = "alloc page array";
goto err_alloc_pages_failed;
}
proc->buffer_size = vma->vm_end - vma->vm_start;
//绑定vm_ops。
vma->vm_ops = &binder_vm_ops;
vma->vm_private_data = proc;
//申请一个page的物理内存(因为目前实际只使用了少量的内存),并把物理内存和user空间地址,vm地址映射好。
if (binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma)) {
ret = -ENOMEM;
failure_string = "alloc small buf";
goto err_alloc_small_buf_failed;
}
//把proc->buffer强制转换成binder_buffer。
buffer = proc->buffer;
//初始化binder_proc.buffers这个list
INIT_LIST_HEAD(&proc->buffers);
//把新申请的内存加入到binder_proc.buffers的list中去。
list_add(&buffer->entry, &proc->buffers);
buffer->free = 1;
//将新申请的内存放到binder_proc.free_buffers的红黑树中去。红黑树也是linux中常用的一个数据结构。
binder_insert_free_buffer(proc, buffer);
proc->free_async_space = proc->buffer_size / 2;
barrier();
//获取当前进程的files_struct结构指针,后续操作中会需要使用。
proc->files = get_files_struct(current);
proc->vma = vma;
proc->vma_vm_mm = vma->vm_mm;
/*pr_info("binder_mmap: %d %lx-%lx maps %p\n",
proc->pid, vma->vm_start, vma->vm_end, proc->buffer);*/
return 0;
err_alloc_small_buf_failed:
kfree(proc->pages);
proc->pages = NULL;
err_alloc_pages_failed:
mutex_lock(&binder_mmap_lock);
vfree(proc->buffer);
proc->buffer = NULL;
err_get_vm_area_failed:
err_already_mapped:
mutex_unlock(&binder_mmap_lock);
err_bad_arg:
pr_err("binder_mmap: %d %lx-%lx %s failed %d\n",
proc->pid, vma->vm_start, vma->vm_end, failure_string, ret);
return ret;
}
binder_mmap中有个重要的调用是binder_update_page_range(),这个函数也一起看下:
static int binder_update_page_range(struct binder_proc *proc, int allocate,
void *start, void *end,
struct vm_area_struct *vma)
{
void *page_addr;
unsigned long user_page_addr;
struct vm_struct tmp_area;
struct page **page;
struct mm_struct *mm;
binder_debug(BINDER_DEBUG_BUFFER_ALLOC,
"%d: %s pages %p-%p\n", proc->pid,
allocate ? "allocate" : "free", start, end);
if (end <= start)
return 0;
trace_binder_update_page_range(proc, allocate, start, end);
if (vma)
mm = NULL;
else
mm = get_task_mm(proc->tsk);
if (mm) {
down_write(&mm->mmap_sem);
vma = proc->vma;
if (vma && mm != proc->vma_vm_mm) {
pr_err("%d: vma mm and task mm mismatch\n",
proc->pid);
vma = NULL;
}
}
if (allocate == 0)
goto free_range;
if (vma == NULL) {
pr_err("%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
proc->pid);
goto err_no_vma;
}
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
int ret;
struct page **page_array_ptr;
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
BUG_ON(*page);
//申请物理page
*page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
if (*page == NULL) {
pr_err("%d: binder_alloc_buf failed for page at %p\n",
proc->pid, page_addr);
goto err_alloc_page_failed;
}
tmp_area.addr = page_addr;
tmp_area.size = PAGE_SIZE + PAGE_SIZE /* guard page? */;
page_array_ptr = page;
//将page和vm做映射,就是物理内存和vm的address的映射。
ret = map_vm_area(&tmp_area, PAGE_KERNEL, &page_array_ptr);
if (ret) {
pr_err("%d: binder_alloc_buf failed to map page at %p in kernel\n",
proc->pid, page_addr);
goto err_map_kernel_failed;
}
//把vm地址换算到user空间地址。
user_page_addr =
(uintptr_t)page_addr + proc->user_buffer_offset;
//将page和user空间地址做映射
ret = vm_insert_page(vma, user_page_addr, page[0]);
if (ret) {
pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
proc->pid, user_page_addr);
goto err_vm_insert_page_failed;
}
/* vm_insert_page does not seem to increment the refcount */
}
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return 0;
free_range:
for (page_addr = end - PAGE_SIZE; page_addr >= start;
page_addr -= PAGE_SIZE) {
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
if (vma)
zap_page_range(vma, (uintptr_t)page_addr +
proc->user_buffer_offset, PAGE_SIZE, NULL);
err_vm_insert_page_failed:
unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
err_map_kernel_failed:
__free_page(*page);
*page = NULL;
err_alloc_page_failed:
;
}
err_no_vma:
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return -ENOMEM;
}
这边提一下,binder_mmap中传下来的 struct vm_area_struct *vma是kernel帮我们构造好的结构体,我们记得他里面的地址是用户空间的地址就可以了。
3.2.1.2 binder_become_context_manager()
binder_become_context_manager(struct binder_state *bs)的函数只是调用了ioctl,主要的动作还是要看看binder driver。
int binder_become_context_manager(struct binder_state *bs)
{
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
ioctl在binder driver部分对应的函数是static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) ,cmd是BINDER_SET_CONTEXT_MGR,arg为0,看看这个cmd相关的代码:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
......
//检测user error的,对于正常流程无影响。
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
binder_lock(__func__);
//获得binder_thread对象,如果本来没有,会创建binder_thread。
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
......
case BINDER_SET_CONTEXT_MGR:
if (binder_context_mgr_node != NULL) {
pr_err("BINDER_SET_CONTEXT_MGR already set\n");
ret = -EBUSY;
goto err;
}
//security_binder_set_context_mgr是做权限检查的,检查当前进程是否有权限。
ret = security_binder_set_context_mgr(proc->tsk);
if (ret < 0)
goto err;
//检测比较binder_context_mgr_uid,或者把当前的uid赋值给binder_context_mgr_uid。
if (uid_valid(binder_context_mgr_uid)) {
if (!uid_eq(binder_context_mgr_uid, current->cred->euid)) {
pr_err("BINDER_SET_CONTEXT_MGR bad uid %d != %d\n",
from_kuid(&init_user_ns, current->cred->euid),
from_kuid(&init_user_ns, binder_context_mgr_uid));
ret = -EPERM;
goto err;
}
} else
binder_context_mgr_uid = current->cred->euid;
//生成binder_context_mgr_node,注意下binder_node是有binder_proc.nodes来管理的。
binder_context_mgr_node = binder_new_node(proc, NULL, NULL);
if (binder_context_mgr_node == NULL) {
ret = -ENOMEM;
goto err;
}
binder_context_mgr_node->local_weak_refs++;
binder_context_mgr_node->local_strong_refs++;
binder_context_mgr_node->has_strong_ref = 1;
binder_context_mgr_node->has_weak_ref = 1;
break;
......
}
ret = 0;
err:
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
binder_unlock(__func__);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
pr_info("%d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
err_unlocked:
trace_binder_ioctl_done(ret);
return ret;
}
在这边对于kernel中的进程概念,我们要理解:kernel中只有进程的概念,thread,process在user层面的概念,记得常说的一句话,thread是一个轻量级的process。因此在kernel中,同一个进程里面的不同thread调用下来,我们获取到的current也是不一样的,pid也是不一样的。
我们在binder_ioctl中看到的binder_thread,就是和user层的thread呼应,user的每个thread在kernel会有一个对应的binder_thread结构,而binder_proc是和user层的process对应,binder_proc在binder_open()中建立,每个process也只会open一次。
b)binder_context_mgr_uid & binder_context_mgr_node
这两个变量都是全局的变量,结合servicemanager的调用,不难理解,这两个变量是记录了servicemanager的节点信息。
binder_context_mgr_uid在binder中使用只有在BINDER_SET_CONTEXT_MGR这个case中,主要还是为了保证安全性,并没有特定的用途。
到这,binder_become_context_manager()的功能也基本清楚了:在binder device中记录了ServiceManager的一些信息,建立了ServcieManager对应的binder_node。
3.2.1.3 binder_loop()
binder_loop()里面是一个循环,分成两部分看,先看进循环之前做了什么,再看循环中做了什么。
binder_looper()循环前
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
unsigned readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
......
}
这边主要是赋值了readbuf,然后去调用了binder_write()函数。readbuf[0]的赋值是BC_ENTER_LOOPER,BC_ENTER_LOOPER是在kernel的binder.h中定义的:
enum binder_driver_command_protocol {
BC_TRANSACTION = _IOW('c', 0, struct binder_transaction_data),
BC_REPLY = _IOW('c', 1, struct binder_transaction_data),
/*
* binder_transaction_data: the sent command.
*/
BC_ACQUIRE_RESULT = _IOW('c', 2, int),
/*
* not currently supported
* int: 0 if the last BR_ATTEMPT_ACQUIRE was not successful.
* Else you have acquired a primary reference on the object.
*/
BC_FREE_BUFFER = _IOW('c', 3, int),
/*
* void *: ptr to transaction data received on a read
*/
BC_INCREFS = _IOW('c', 4, int),
BC_ACQUIRE = _IOW('c', 5, int),
BC_RELEASE = _IOW('c', 6, int),
BC_DECREFS = _IOW('c', 7, int),
/*
* int: descriptor
*/
BC_INCREFS_DONE = _IOW('c', 8, struct binder_ptr_cookie),
BC_ACQUIRE_DONE = _IOW('c', 9, struct binder_ptr_cookie),
/*
* void *: ptr to binder
* void *: cookie for binder
*/
BC_ATTEMPT_ACQUIRE = _IOW('c', 10, struct binder_pri_desc),
/*
* not currently supported
* int: priority
* int: descriptor
*/
BC_REGISTER_LOOPER = _IO('c', 11),
/*
* No parameters.
* Register a spawned looper thread with the device.
*/
BC_ENTER_LOOPER = _IO('c', 12),
BC_EXIT_LOOPER = _IO('c', 13),
/*
* No parameters.
* These two commands are sent as an application-level thread
* enters and exits the binder loop, respectively. They are
* used so the binder can have an accurate count of the number
* of looping threads it has available.
*/
BC_REQUEST_DEATH_NOTIFICATION = _IOW('c', 14, struct binder_ptr_cookie),
/*
* void *: ptr to binder
* void *: cookie
*/
BC_CLEAR_DEATH_NOTIFICATION = _IOW('c', 15, struct binder_ptr_cookie),
/*
* void *: ptr to binder
* void *: cookie
*/
BC_DEAD_BINDER_DONE = _IOW('c', 16, void *),
/*
* void *: cookie
*/
};
这里我们只需要知道binder_driver_command_protocol中定义的是一系列的comand,这些command会对应一个unsigned int,其中具体赋值的_IO,_IOW这些宏,我们不需要去了解。
int binder_write(struct binder_state *bs, void *data, unsigned len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (unsigned) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder_write: ioctl failed (%s)\n",
strerror(errno));
}
return res;
}
这边出现了binder_wreite_read结构体,这个结构体也是在kernel的binder.h头文件中定义的:
struct binder_write_read {
signed long write_size; /* bytes to write */
signed long write_consumed; /* bytes consumed by driver */
unsigned long write_buffer;
signed long read_size; /* bytes to read */
signed long read_consumed; /* bytes consumed by driver */
unsigned long read_buffer;
};
binder_write_read结构体里面有read和write两部分信息,而binder_write()函数中只是了write这部分。
这里我们看到最终是调用了ioctl,cmd是BINDER_WRITE_READ,参数是包含了BC_ENTER_LOOPER的binder_write_read结构。
看看driver这边是怎么处理的:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
//从cmd中读取arg的数据的长度。
unsigned int size = _IOC_SIZE(cmd);
//将long参数,转换为指针。
void __user *ubuf = (void __user *)arg;
......
//获得binder_thread对象,如果本来没有,会创建binder_thread。
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ: {
struct binder_write_read bwr;
//校验参数是否为binder_write_read参数。
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto err;
}
//把用户空间的数据copy到内核空间来。
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %ld at %08lx, read %ld at %08lx\n",
proc->pid, thread->pid, bwr.write_size,
bwr.write_buffer, bwr.read_size, bwr.read_buffer);
//write_size>0,表明数据要传给binder driver。
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
//read_size>0,表明要从driver中读数据。
if (bwr.read_size > 0) {
ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
if (!list_empty(&proc->todo))
wake_up_interruptible(&proc->wait);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %ld of %ld, read return %ld of %ld\n",
proc->pid, thread->pid, bwr.write_consumed, bwr.write_size,
bwr.read_consumed, bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
break;
}
......
}
......
}
对于binder_write,write_size>0,会执行binder_thread_write()函数:
int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
void __user *buffer, int size, signed long *consumed)
{
uint32_t cmd;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
while (ptr < end && thread->return_error == BR_OK) {
//读取用户层的command
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
//command 记录,for debug。
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
binder_stats.bc[_IOC_NR(cmd)]++;
proc->stats.bc[_IOC_NR(cmd)]++;
thread->stats.bc[_IOC_NR(cmd)]++;
}
switch (cmd) {
......
case BC_ENTER_LOOPER:
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_ENTER_LOOPER\n",
proc->pid, thread->pid);
if (thread->looper & BINDER_LOOPER_STATE_REGISTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_ENTER_LOOPER called after BC_REGISTER_LOOPER\n",
proc->pid, thread->pid);
}
//将binder_thread的looper,设上了BINDER_LOOPER_STATE_ENTERED的bit。
thread->looper |= BINDER_LOOPER_STATE_ENTERED;
break;
case BC_EXIT_LOOPER:
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_EXIT_LOOPER\n",
proc->pid, thread->pid);
//设上BINDER_LOOPER_STATE_EXITED的bit位。
thread->looper |= BINDER_LOOPER_STATE_EXITED;
break;
......
}
//更新consumed值。
*consumed = ptr - buffer;
}
return 0;
}
BC_ENTER_LOOPER这个command中只是更新当前thread对应的binder_thread的looper的对应bit,表明已经进入了循环处理。在这里,我们也看到了BC_ENTER_LOOPER对应的command BC_EXIT_LOOPER,这个command行为只是把looper的对应的BINDER_LOOPER_STATE_EXITED bit置上。
binder_looper()循环
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
循环中前半段是从binder中去read数据,而后半段是解析read出来的数据。
3.3 addService()分析
addService这个场景是指SampleService启动时候的注册service的整个流程,这里面涉及到SampleService,binder,ServiceManaager这三者的交互。
3.3.1 SampleService端分析
SampleService addService的操作分两步,先是获取ServiceManager的操作接口,然后调用addService接口。
// publish SampleService
sp sm(defaultServiceManager());
sm->addService(String16("SampleService"), samplesrv, false);
3.3.1.1 ServiceManager接口的获取
ServiceManager接口获取,是调用的defaultServiceManager()函数,函数实现在frameworks/native/libs/binder/IServiceManager.cpp:
sp defaultServiceManager()
{
if (gDefaultServiceManager != NULL) return gDefaultServiceManager;
{
AutoMutex _l(gDefaultServiceManagerLock);
while (gDefaultServiceManager == NULL) {
gDefaultServiceManager = interface_cast(
ProcessState::self()->getContextObject(NULL));
if (gDefaultServiceManager == NULL)
sleep(1);
}
}
return gDefaultServiceManager;
}
ProcessState::self()->getContextObject(NULL)调用了getStrongProxyForHandle(0),我们来仔细看下这个函数:
sp ProcessState::getStrongProxyForHandle(int32_t handle)
{
sp result;
AutoMutex _l(mLock);
//以handle作为index,在VectormHandleToObject中查找handle_entry,如果没有,会建立一个空的handle_entry并返回。
handle_entry* e = lookupHandleLocked(handle);
if (e != NULL) {
// We need to create a new BpBinder if there isn't currently one, OR we
// are unable to acquire a weak reference on this current one. See comment
// in getWeakProxyForHandle() for more info about this.
IBinder* b = e->binder;
//初始化新建的entry
if (b == NULL || !e->refs->attemptIncWeak(this)) {
//handle为0是ServiceManager,这边是对于ServiceManager的特殊处理。
if (handle == 0) {
// Special case for context manager...
// The context manager is the only object for which we create
// a BpBinder proxy without already holding a reference.
// Perform a dummy transaction to ensure the context manager
// is registered before we create the first local reference
// to it (which will occur when creating the BpBinder).
// If a local reference is created for the BpBinder when the
// context manager is not present, the driver will fail to
// provide a reference to the context manager, but the
// driver API does not return status.
//
// Note that this is not race-free if the context manager
// dies while this code runs.
//
// TODO: add a driver API to wait for context manager, or
// stop special casing handle 0 for context manager and add
// a driver API to get a handle to the context manager with
// proper reference counting.
//检测ServiceManager是否已经启动。
Parcel data;
status_t status = IPCThreadState::self()->transact(
0, IBinder::PING_TRANSACTION, data, NULL, 0);
if (status == DEAD_OBJECT)
return NULL;
}
//构造BpBinder对象,这个对象会被返回。注意BpBinder是继承IBinder的。
b = new BpBinder(handle);
e->binder = b;
//记录weakRefs
if (b) e->refs = b->getWeakRefs();
result = b;
} else {
// This little bit of nastyness is to allow us to add a primary
// reference to the remote proxy when this team doesn't have one
// but another team is sending the handle to us.
//调用force_set,从而强制调用BpBinder::onFirstRef()
result.force_set(b);
e->refs->decWeak(this);
}
}
return result;
}
这个函数中几行代码,我们逐个分析:
SampleService端Transact()分析
transact函数如下:
status_t IPCThreadState::transact(int32_t handle,
uint32_t code, const Parcel& data,
Parcel* reply, uint32_t flags)
{
status_t err = data.errorCheck();
flags |= TF_ACCEPT_FDS;
......
if (err == NO_ERROR) {
LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
}
if (err != NO_ERROR) {
if (reply) reply->setError(err);
return (mLastError = err);
}
if ((flags & TF_ONE_WAY) == 0) {
......
if (reply) {
err = waitForResponse(reply);
} else {
Parcel fakeReply;
err = waitForResponse(&fakeReply);
}
......
} else {
err = waitForResponse(NULL, NULL);
}
return err;
}
trasact中动作就只有writeTransactionData()和waitForResponse()。
先看下writeTransactionData()
status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
binder_transaction_data tr;
tr.target.handle = handle;
tr.code = code;
tr.flags = binderFlags;
//pid和uid会在binder中设置。
tr.cookie = 0;
tr.sender_pid = 0;
tr.sender_euid = 0;
const status_t err = data.errorCheck();
if (err == NO_ERROR) {
tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
tr.data.ptr.offsets = data.ipcObjects();
} else if (statusBuffer) {
tr.flags |= TF_STATUS_CODE;
*statusBuffer = err;
tr.data_size = sizeof(status_t);
tr.data.ptr.buffer = statusBuffer;
tr.offsets_size = 0;
tr.data.ptr.offsets = NULL;
} else {
return (mLastError = err);
}
mOut.writeInt32(cmd);
mOut.write(&tr, sizeof(tr));
return NO_ERROR;
}
IPCThreadState::writeTransactionData()中是用IPCThreadState::transact()的参数构造了一个binder_transaction_data对象,并把这个对象写入Parcel mOut中去。在编写SampleService的时候,我们已经知道mOut保存的是要写入binder的数据,也就是说writeTransactionData()这边是为写入binder准备了一组数据。
我们再看看IPCThreadState::waitForResponse(),这个函数中的重点是调用了IPCThreadState::talkWithDriver()来读取数据,然后进行处理。IPCThreadState::talkWithDriver()我们在前面分析IPCThreadState::JoinThreadPool()的时候大概看过,不过这里我们还是要再仔细分析下,看看它和binder的交互细节:
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
if (mProcess->mDriverFD <= 0) {
return -EBADF;
}
binder_write_read bwr;
// Is the read buffer empty?
//dataPosition() >= dataSize()表明中数据已经消耗完毕,或者没有数据(两者都为0)
const bool needRead = mIn.dataPosition() >= mIn.dataSize();
// We don't want to write anything if we are still reading
// from data left in the input buffer and the caller
// has requested to read the next data.
//判断是否需要写数据。
//判断条件一是doReceive,表明client是不是想要read数据,为false的时候,表明他不会去读数据,但是隐含表明他可能是想要写数据的,否则就不会调用talkWithDriver的函数了,为true的时候,表明希望去read数据,但是不表明不想写数据。
//判断条件二是needRead,needRead为false,表明buffer中还有数据,这个时候不能去写数据,因为写数据可能要回写数据,这样会导致之前的数据被冲掉,而为true的时候,表明read已经完成,可以去write了。
//结合起来就是doReceive为false的时候,或者needRead为true的时候,可以去write。
const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
bwr.write_size = outAvail;
bwr.write_buffer = (long unsigned int)mOut.data();
// This is what we'll read.
//填入read信息。
if (doReceive && needRead) {
bwr.read_size = mIn.dataCapacity();
bwr.read_buffer = (long unsigned int)mIn.data();
} else {
bwr.read_size = 0;
bwr.read_buffer = 0;
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
if (outAvail != 0) {
alog << "Sending commands to driver: " << indent;
const void* cmds = (const void*)bwr.write_buffer;
const void* end = ((const uint8_t*)cmds)+bwr.write_size;
alog << HexDump(cmds, bwr.write_size) << endl;
while (cmds < end) cmds = printCommand(alog, cmds);
alog << dedent;
}
alog << "Size of receive buffer: " << bwr.read_size
<< ", needRead: " << needRead << ", doReceive: " << doReceive << endl;
}
// Return immediately if there is nothing to do.
if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
bwr.write_consumed = 0;
bwr.read_consumed = 0;
status_t err;
do {
IF_LOG_COMMANDS() {
alog << "About to read/write, write size = " << mOut.dataSize() << endl;
}
#if defined(HAVE_ANDROID_OS)
//和binder交互。
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
err = NO_ERROR;
else
err = -errno;
#else
err = INVALID_OPERATION;
#endif
if (mProcess->mDriverFD <= 0) {
err = -EBADF;
}
IF_LOG_COMMANDS() {
alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
}
} while (err == -EINTR);
IF_LOG_COMMANDS() {
alog << "Our err: " << (void*)err << ", write consumed: "
<< bwr.write_consumed << " (of " << mOut.dataSize()
<< "), read consumed: " << bwr.read_consumed << endl;
}
if (err >= NO_ERROR) {
if (bwr.write_consumed > 0) {
//移除binder读取过的数据。
if (bwr.write_consumed < (ssize_t)mOut.dataSize())
mOut.remove(0, bwr.write_consumed);
else //数据都已经被binder读取。
mOut.setDataSize(0);
}
if (bwr.read_consumed > 0) {
//binder有返回数据。
mIn.setDataSize(bwr.read_consumed);
mIn.setDataPosition(0);
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
alog << "Remaining data size: " << mOut.dataSize() << endl;
alog << "Received commands from driver: " << indent;
const void* cmds = mIn.data();
const void* end = mIn.data() + mIn.dataSize();
alog << HexDump(cmds, mIn.dataSize()) << endl;
while (cmds < end) cmds = printReturnCommand(alog, cmds);
alog << dedent;
}
return NO_ERROR;
}
return err;
}
talkWithDriver()的核心动作就是ioctl,对于IPCThreadState::self()->transact(0, IBinder::PING_TRANSACTION, data, NULL, 0)这行代码来说,最终就是ioctl了command BINDER_WRITE_READ,参数bwr的write_data是前面writeTransactionData()中构造的binder_transaction_data,这个data的command是BC_TRANSACTION。
case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;
//copy上层传入的binder_transaction_data数据。
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
break;
}
获取数据之后,调用了binder_transaction(),这个函数比较庞大:
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply)
{
struct binder_transaction *t;
struct binder_work *tcomplete;
size_t *offp, *off_end;
struct binder_proc *target_proc;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct list_head *target_list;
wait_queue_head_t *target_wait;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error;
//binder transaction的log构造,为了debug需要。
e = binder_transaction_log_add(&binder_transaction_log);
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
if (reply) { //command是BC_REPLY
in_reply_to = thread->transaction_stack;
if (in_reply_to == NULL) {
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
goto err_empty_call_stack;
}
binder_set_nice(in_reply_to->saved_priority);
if (in_reply_to->to_thread != thread) {
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
return_error = BR_FAILED_REPLY;
in_reply_to = NULL;
goto err_bad_call_stack;
}
//reset transaaction_stack
thread->transaction_stack = in_reply_to->to_parent;
target_thread = in_reply_to->from;
if (target_thread == NULL) {
return_error = BR_DEAD_REPLY;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
return_error = BR_FAILED_REPLY;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
target_proc = target_thread->proc;
} else { //command为BC_TRANSACTION.
if (tr->target.handle) { //handle不为0的情况,这个是一般service的处理。
struct binder_ref *ref;
ref = binder_get_ref(proc, tr->target.handle);
if (ref == NULL) {
binder_user_error("%d:%d got transaction to invalid handle\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
goto err_invalid_target_handle;
}
target_node = ref->node;
} else { //handle为0,即ServiceManager的case,直接获取binder_context_mgr_node。
target_node = binder_context_mgr_node;
if (target_node == NULL) {
return_error = BR_DEAD_REPLY;
goto err_no_context_mgr_node;
}
}
e->to_node = target_node->debug_id;
//target_proc是数据要transact的目标进程
target_proc = target_node->proc;
if (target_proc == NULL) {
return_error = BR_DEAD_REPLY;
goto err_dead_binder;
}
//security检测。
if (security_binder_transaction(proc->tsk, target_proc->tsk) < 0) {
return_error = BR_FAILED_REPLY;
goto err_invalid_target_handle;
}
//在同步模式下的时候,from才会有设置。
//因为同步模式下,stack中之前的thread会等待reply,如果此时调用对应的process中的service的时候使用了其他的thread,会导致多个thread在一次调用中被阻塞,
//这样会导致其他client调用service时间消耗变多。
//异步模式下不需要这个考量,发送完command之后,就不再等待reply了。
if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {
struct binder_transaction *tmp;
tmp = thread->transaction_stack;
if (tmp->to_thread != thread) {
binder_user_error("%d:%d got new transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, tmp->debug_id,
tmp->to_proc ? tmp->to_proc->pid : 0,
tmp->to_thread ?
tmp->to_thread->pid : 0);
return_error = BR_FAILED_REPLY;
goto err_bad_call_stack;
}
while (tmp) {
if (tmp->from && tmp->from->proc == target_proc)
target_thread = tmp->from;
tmp = tmp->from_parent;
}
}
}
//target_thread在transaction的时候,可能不存在,reply时候一定存在。
if (target_thread) {
e->to_thread = target_thread->pid;
target_list = &target_thread->todo;
target_wait = &target_thread->wait;
} else {
target_list = &target_proc->todo;
target_wait = &target_proc->wait;
}
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
//申请binder_transaction对象。
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL) {
return_error = BR_FAILED_REPLY;
goto err_alloc_t_failed;
}
//for debug。
binder_stats_created(BINDER_STAT_TRANSACTION);
//申请binder_work对象。
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
if (tcomplete == NULL) {
return_error = BR_FAILED_REPLY;
goto err_alloc_tcomplete_failed;
}
//for debug。
binder_stats_created(BINDER_STAT_TRANSACTION_COMPLETE);
t->debug_id = ++binder_last_id;
e->debug_id = t->debug_id;
if (reply)
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d BC_REPLY %d -> %d:%d, data %p-%p size %zd-%zd\n",
proc->pid, thread->pid, t->debug_id,
target_proc->pid, target_thread->pid,
tr->data.ptr.buffer, tr->data.ptr.offsets,
tr->data_size, tr->offsets_size);
else
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d BC_TRANSACTION %d -> %d - node %d, data %p-%p size %zd-%zd\n",
proc->pid, thread->pid, t->debug_id,
target_proc->pid, target_node->debug_id,
tr->data.ptr.buffer, tr->data.ptr.offsets,
tr->data_size, tr->offsets_size);
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread; //同步transaction的时候,记录from。
else
t->from = NULL; //异步transaction或者reply时候,不需要记录from了。
//把上层传下来的binder_transaction_data中保存信息到binder_transaction中。
//从当前的binder_proc获取uid。
t->sender_euid = proc->tsk->cred->euid;
t->to_proc = target_proc;
//transaction的时候target_thread可能为空,reply时一定不为空。
t->to_thread = target_thread;
//上层transact的command,如IBinder::PING_TRANSACTION。reply的时候可能是0.
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
//for debug.
trace_binder_transaction(reply, t, target_node);
//申请binder_buffer,注意是在目标进程中申请的,这样目标进程才能直接访问到。
t->buffer = binder_alloc_buf(target_proc, tr->data_size,
tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
if (t->buffer == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_alloc_buf_failed;
}
//初始化binder_buffer。
t->buffer->allow_user_free = 0;
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
//transaction的时候target_node存在,reply时候没有对它赋值,所以是NULL。
//在binder_thread_read()中根据target_node为null,来判断是否为reply。
t->buffer->target_node = target_node;
trace_binder_transaction_alloc_buf(t->buffer);
//increate targe_node的strong ref。在BC_FREE_BUFFER的处理中,调用了binder_transaction_buffer_release()中回去decrase node ref.
if (target_node)
binder_inc_node(target_node, 1, 0, NULL);
//计算保存objects offset数组的起始地址。objects offset放在data后面。
offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));
//copy parcel中的data数组。
if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
goto err_copy_data_failed;
}
//copy parcel中的objects offset数组。
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
goto err_copy_data_failed;
}
if (!IS_ALIGNED(tr->offsets_size, sizeof(size_t))) {
binder_user_error("%d:%d got transaction with invalid offsets size, %zd\n",
proc->pid, thread->pid, tr->offsets_size);
return_error = BR_FAILED_REPLY;
goto err_bad_offset;
}
off_end = (void *)offp + tr->offsets_size;
//遍历objects offset数组。
for (; offp < off_end; offp++) {
struct flat_binder_object *fp;
//*offp是一个object的在data中的偏移。
//检查数据是不是合法。
if (*offp > t->buffer->data_size - sizeof(*fp) ||//offset是否超过了合法范围,offset是指向一个flat_binder_object,所以是比较data_size - sizeof(*fp)
t->buffer->data_size < sizeof(*fp) || //data数据比flat_binder_object size还小,有错误
!IS_ALIGNED(*offp, sizeof(void *))) {
binder_user_error("%d:%d got transaction with invalid offset, %zd\n",
proc->pid, thread->pid, *offp);
return_error = BR_FAILED_REPLY;
goto err_bad_offset;
}
//object只有flat_binder_object。
fp = (struct flat_binder_object *)(t->buffer->data + *offp);
//对不同类型的object进行处理。各种类型,结合Parcel.cpp中flatten_binder()函数去理解。
switch (fp->type) {
//local binder object的处理,means BBinder。
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
struct binder_ref *ref;
//查找/建立对应的binder_node。
//除去ServiceManager的binder_node,其他所有的binder_node都在这边建立,在调用ServiceManager::addService的时候调用到。
struct binder_node *node = binder_get_node(proc, fp->binder);
if (node == NULL) {
node = binder_new_node(proc, fp->binder, fp->cookie);
if (node == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_new_node_failed;
}
node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
}
//检查cookie也就是service的指针是否一致。
if (fp->cookie != node->cookie) {
binder_user_error("%d:%d sending u%p node %d, cookie mismatch %p != %p\n",
proc->pid, thread->pid,
fp->binder, node->debug_id,
fp->cookie, node->cookie);
goto err_binder_get_ref_for_node_failed;
}
//security权限检测。
if (security_binder_transfer_binder(proc->tsk, target_proc->tsk)) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_for_node_failed;
}
//在target_proc中查找/创建 binder_ref,其中binder_ref.desc在这边被确定。
ref = binder_get_ref_for_node(target_proc, node);
if (ref == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_for_node_failed;
}
//将local binder转换成remote binder信息,之后会被target proc读取使用。
if (fp->type == BINDER_TYPE_BINDER)
fp->type = BINDER_TYPE_HANDLE;
else
fp->type = BINDER_TYPE_WEAK_HANDLE;
//desc在binder_get_ref_for_node()中被确定,会被作为handle。
fp->handle = ref->desc;
//添加BINDER_WORK_NODE work到thread的todo list,increase strong binder。
binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE,
&thread->todo);
trace_binder_transaction_node_to_ref(t, node, ref);
binder_debug(BINDER_DEBUG_TRANSACTION,
" node %d u%p -> ref %d desc %d\n",
node->debug_id, node->ptr, ref->debug_id,
ref->desc);
} break;
//remote binder object, means BpBinder。
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
struct binder_ref *ref = binder_get_ref(proc, fp->handle);
if (ref == NULL) {
binder_user_error("%d:%d got transaction with invalid handle, %ld\n",
proc->pid,
thread->pid, fp->handle);
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_failed;
}
if (security_binder_transfer_binder(proc->tsk, target_proc->tsk)) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_failed;
}
//如果传给service所在的进程,转换为BINDER_TYPE_BINDER类型的object。
if (ref->node->proc == target_proc) {
if (fp->type == BINDER_TYPE_HANDLE)
fp->type = BINDER_TYPE_BINDER;
else
fp->type = BINDER_TYPE_WEAK_BINDER;
fp->binder = ref->node->ptr;
fp->cookie = ref->node->cookie;
binder_inc_node(ref->node, fp->type == BINDER_TYPE_BINDER, 0, NULL);
trace_binder_transaction_ref_to_node(t, ref);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> node %d u%p\n",
ref->debug_id, ref->desc, ref->node->debug_id,
ref->node->ptr);
} else { //传入到其他client进程,为目标进程建立新的binder_ref,并传回这个新的binder_ref的信息。
struct binder_ref *new_ref;
new_ref = binder_get_ref_for_node(target_proc, ref->node); //第一次会建立一个新的binder_ref。
if (new_ref == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_for_node_failed;
}
fp->handle = new_ref->desc; //用目标进程desc替换。
binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);
trace_binder_transaction_ref_to_ref(t, ref,
new_ref);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> ref %d desc %d (node %d)\n",
ref->debug_id, ref->desc, new_ref->debug_id,
new_ref->desc, ref->node->debug_id);
}
} break;
//文件指针fd。
case BINDER_TYPE_FD: {
int target_fd;
struct file *file;
if (reply) {
if (!(in_reply_to->flags & TF_ACCEPT_FDS)) {
binder_user_error("%d:%d got reply with fd, %ld, but target does not allow fds\n",
proc->pid, thread->pid, fp->handle);
return_error = BR_FAILED_REPLY;
goto err_fd_not_allowed;
}
} else if (!target_node->accept_fds) {
binder_user_error("%d:%d got transaction with fd, %ld, but target does not allow fds\n",
proc->pid, thread->pid, fp->handle);
return_error = BR_FAILED_REPLY;
goto err_fd_not_allowed;
}
file = fget(fp->handle);
if (file == NULL) {
binder_user_error("%d:%d got transaction with invalid fd, %ld\n",
proc->pid, thread->pid, fp->handle);
return_error = BR_FAILED_REPLY;
goto err_fget_failed;
}
if (security_binder_transfer_file(proc->tsk, target_proc->tsk, file) < 0) {
fput(file);
return_error = BR_FAILED_REPLY;
goto err_get_unused_fd_failed;
}
target_fd = task_get_unused_fd_flags(target_proc, O_CLOEXEC);
if (target_fd < 0) {
fput(file);
return_error = BR_FAILED_REPLY;
goto err_get_unused_fd_failed;
}
task_fd_install(target_proc, target_fd, file);
trace_binder_transaction_fd(t, fp->handle, target_fd);
binder_debug(BINDER_DEBUG_TRANSACTION,
" fd %ld -> %d\n", fp->handle, target_fd);
/* TODO: fput? */
fp->handle = target_fd;
} break;
default:
binder_user_error("%d:%d got transaction with invalid object type, %lx\n",
proc->pid, thread->pid, fp->type);
return_error = BR_FAILED_REPLY;
goto err_bad_object_type;
}
}
if (reply) {
BUG_ON(t->buffer->async_transaction != 0);
//清除掉binder_tranasaction发起thread的transaction_stack,这里会释放掉in_reply_to这个binder_transaction
binder_pop_transaction(target_thread, in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {//同步transaction
BUG_ON(t->buffer->async_transaction != 0);
t->need_reply = 1;
//transaction_stack指向当前thread的最后一个binder_transaction,通过from_parent进行链接。
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
} else { //异步transaction
BUG_ON(target_node == NULL);
BUG_ON(t->buffer->async_transaction != 1);
if (target_node->has_async_transaction) {
target_list = &target_node->async_todo;
target_wait = NULL;
} else
target_node->has_async_transaction = 1;
}
//把新的binder_transaction加入到target的todo list中。
t->work.type = BINDER_WORK_TRANSACTION;
list_add_tail(&t->work.entry, target_list);
//在发出transaction的thread的todo list中加入complete的work。
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
list_add_tail(&tcomplete->entry, &thread->todo);
if (target_wait)
wake_up_interruptible(target_wait);
return;
......
}
binder_transaction()函数对于BC_TRANSCATION来说,做了下面的动作:
step 1中,寻找target thread的操作是针对同步操作的时候,并且涉及到交叉调用的情况下采取执行的,从逻辑上看这样的作法是为了减少交叉的同步调用时候的thread的消耗。
step 5,因为本次transact中Parcel中没有object数据,所以对于这个step的细节暂且跳过。
对于我们当前的场景,binder_transaction中主要是:找到了targetnode,copy了Parcel中的data,在target proc(ServiceManager的binder_proc中)中加入了type为BINDER_WORK_TRANSACTION的work。
在binder_thread_write完成之后,进入binder_thread_read()函数中,
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
void __user *buffer, int size,
signed long *consumed, int non_block)
{
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
int wait_for_proc_work;
if (*consumed == 0) {
//consumed ==0,表明driver还没有填充过数据,先填充一个BR_NOOP进去,作为开始的标示。
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
retry:
//检查当前thread没有需要处理的内容,是否要去检查proc中的todo work。
//transaction_stack表明当前的thread处于一个同步操作的过程中,不能跳出去执行proc的work。
wait_for_proc_work = thread->transaction_stack == NULL &&
list_empty(&thread->todo);
if (thread->return_error != BR_OK && ptr < end) {
if (thread->return_error2 != BR_OK) {
if (put_user(thread->return_error2, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, thread->return_error2);
if (ptr == end)
goto done;
thread->return_error2 = BR_OK;
}
if (put_user(thread->return_error, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, thread->return_error);
thread->return_error = BR_OK;
goto done;
}
thread->looper |= BINDER_LOOPER_STATE_WAITING; //set waiting 状态位
if (wait_for_proc_work)
proc->ready_threads++; //nothing todo, it means idle
binder_unlock(__func__);
trace_binder_wait_for_work(wait_for_proc_work,
!!thread->transaction_stack,
!list_empty(&thread->todo));
if (wait_for_proc_work) {
if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))) {
binder_user_error("%d:%d ERROR: Thread waiting for process work before calling BC_REGISTER_LOOPER or BC_ENTER_LOOPER (state %x)\n",
proc->pid, thread->pid, thread->looper);
wait_event_interruptible(binder_user_error_wait,
binder_stop_on_user_error < 2);
}
binder_set_nice(proc->default_priority);
if (non_block) { //non block模式下,只检测有无proc work。
if (!binder_has_proc_work(proc, thread))
ret = -EAGAIN;
} else //block模式下,等待proc有work添加进来。
ret = wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
} else {
//检查是否有thread todo中是否有work。
if (non_block) {
if (!binder_has_thread_work(thread))
ret = -EAGAIN;
} else //等待thread todo 中有work。
ret = wait_event_freezable(thread->wait, binder_has_thread_work(thread));
}
binder_lock(__func__); //注意有锁的。
if (wait_for_proc_work)
proc->ready_threads--;
thread->looper &= ~BINDER_LOOPER_STATE_WAITING; //unset waiting 状态位
if (ret)
return ret;
while (1) {
uint32_t cmd;
struct binder_transaction_data tr;
struct binder_work *w;
struct binder_transaction *t = NULL;
//获取work。
if (!list_empty(&thread->todo)) //从binder_thread.todo中获取work。
w = list_first_entry(&thread->todo, struct binder_work, entry);
else if (!list_empty(&proc->todo) && wait_for_proc_work) //从binder_proc中获取work。
w = list_first_entry(&proc->todo, struct binder_work, entry);
else {
//ptr - buffer == 4, 意味着没有加入有效数据,只有开头加入的BR_NOOP。
if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
goto retry;
//处理完毕,在此退出。
break;
}
if (end - ptr < sizeof(tr) + 4) //buffer已经无法确保能够保存下一个command了。最大的一个command信息就是command+binder_transaction_data的大小
break;
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
//这个work是binder_transaction的一个成员,从这个work地址计算出binder_transaction的对象的地址。
t = container_of(w, struct binder_transaction, work);
} break;
case BINDER_WORK_TRANSACTION_COMPLETE: {
cmd = BR_TRANSACTION_COMPLETE;
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_TRANSACTION_COMPLETE,
"%d:%d BR_TRANSACTION_COMPLETE\n",
proc->pid, thread->pid);
list_del(&w->entry);
kfree(w);
binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);
} break;
case BINDER_WORK_NODE: {
//更新对于Binder_node对应的BBinder的refs。这里主要用node->has_strong_ref,has_weak_ref来标志是否要更新user层,减少更新user层的次数。
struct binder_node *node = container_of(w, struct binder_node, work);
uint32_t cmd = BR_NOOP;
const char *cmd_name;
int strong = node->internal_strong_refs || node->local_strong_refs;
int weak = !hlist_empty(&node->refs) || node->local_weak_refs || strong;
if (weak && !node->has_weak_ref) {
cmd = BR_INCREFS;
cmd_name = "BR_INCREFS";
node->has_weak_ref = 1;
node->pending_weak_ref = 1; //flag表明等待user层反馈。
node->local_weak_refs++; //在BC_INCREFS_DONE中通过BINDER_DEC_NODE来减去。
} else if (strong && !node->has_strong_ref) {
//need increase strong reference.
cmd = BR_ACQUIRE;
cmd_name = "BR_ACQUIRE";
node->has_strong_ref = 1;
node->pending_strong_ref = 1; //flag表明等待user层反馈。
node->local_strong_refs++; //在BC_QCQUIRE_DONE中通过BINDER_DEC_NODE来减去。
} else if (!strong && node->has_strong_ref) {
//no reference,need to free.
cmd = BR_RELEASE;
cmd_name = "BR_RELEASE";
node->has_strong_ref = 0;
} else if (!weak && node->has_weak_ref) {
cmd = BR_DECREFS;
cmd_name = "BR_DECREFS";
node->has_weak_ref = 0;
}
if (cmd != BR_NOOP) {
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (put_user(node->ptr, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
if (put_user(node->cookie, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s %d u%p c%p\n",
proc->pid, thread->pid, cmd_name, node->debug_id, node->ptr, node->cookie);
} else {
list_del_init(&w->entry);
if (!weak && !strong) {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%p c%p deleted\n",
proc->pid, thread->pid, node->debug_id,
node->ptr, node->cookie);
rb_erase(&node->rb_node, &proc->nodes);
kfree(node);
binder_stats_deleted(BINDER_STAT_NODE);
} else {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%p c%p state unchanged\n",
proc->pid, thread->pid, node->debug_id, node->ptr,
node->cookie);
}
}
} break;
case BINDER_WORK_DEAD_BINDER:
case BINDER_WORK_DEAD_BINDER_AND_CLEAR:
case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {
struct binder_ref_death *death;
uint32_t cmd;
//获取binder_ref_death对象。
death = container_of(w, struct binder_ref_death, work);
if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE;
else
cmd = BR_DEAD_BINDER;
//写回cmd。
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (put_user(death->cookie, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_DEATH_NOTIFICATION,
"%d:%d %s %p\n",
proc->pid, thread->pid,
cmd == BR_DEAD_BINDER ?
"BR_DEAD_BINDER" :
"BR_CLEAR_DEATH_NOTIFICATION_DONE",
death->cookie);
if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
list_del(&w->entry);
kfree(death);
binder_stats_deleted(BINDER_STAT_DEATH);
} else//加入到delivered_death。
list_move(&w->entry, &proc->delivered_death);
if (cmd == BR_DEAD_BINDER)
goto done; /* DEAD_BINDER notifications can cause transactions */
} break;
}
if (!t)
continue;
//将binder_tranasaction中的信息,保存到binder_transaction_data中。
//和binder_transaction()函数中行为相反。
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {//transaction cmd时候。
//对于binder_context_mgr_node,ptr和cookie都为0。
//对于一般service来说,binder_node中的ptr是service的weakrefs指针,cookie是service的对象指针。(见Parcel中的flatten_binder())
struct binder_node *target_node = t->buffer->target_node;
tr.target.ptr = target_node->ptr;
tr.cookie = target_node->cookie;
t->saved_priority = task_nice(current);
//同步模式下设置priority
if (t->priority < target_node->min_priority &&
!(t->flags & TF_ONE_WAY))
binder_set_nice(t->priority);
else if (!(t->flags & TF_ONE_WAY) ||
t->saved_priority > target_node->min_priority)
binder_set_nice(target_node->min_priority);
cmd = BR_TRANSACTION;
} else { //reply cmd时候,reply时候target_node为null。
tr.target.ptr = NULL;
tr.cookie = NULL;
cmd = BR_REPLY;
}
//transaction的真实command。
tr.code = t->code;
tr.flags = t->flags;
tr.sender_euid = from_kuid(current_user_ns(), t->sender_euid);
//记录sender_pid。
//异步模式,或者reply情况下,t->from == 0.
if (t->from) {
struct task_struct *sender = t->from->proc->tsk;
tr.sender_pid = task_tgid_nr_ns(sender,
task_active_pid_ns(current));
} else {
tr.sender_pid = 0;
}
//转换在binder_thread_write中保留的Parcel数据信息。
tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
//地址转换给user空间的地址,传给binder_transaction_data
tr.data.ptr.buffer = (void *)t->buffer->data +
proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));
//写入command。
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
//把binder_transaction_data copy给user层。
if (copy_to_user(ptr, &tr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
trace_binder_transaction_received(t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d %s %d %d:%d, cmd %d size %zd-%zd ptr %p-%p\n",
proc->pid, thread->pid,
(cmd == BR_TRANSACTION) ? "BR_TRANSACTION" :
"BR_REPLY",
t->debug_id, t->from ? t->from->proc->pid : 0,
t->from ? t->from->pid : 0, cmd,
t->buffer->data_size, t->buffer->offsets_size,
tr.data.ptr.buffer, tr.data.ptr.offsets);
list_del(&t->work.entry);
t->buffer->allow_user_free = 1;
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
//同步模式下更新stack信息,binder_transaction t会在reply时候在binder_transaction()中pop掉。
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t; //把最近读到的binder_transaction设置为transaction_stack
} else { //异步模式,或者reply时,binder_transaction已经不需要了
//(reply时候才需要通过binder_transaction找到reply的target thread),在这里直接释放掉。
t->buffer->transaction = NULL;
kfree(t);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
}
break;
}
done:
*consumed = ptr - buffer;
//当前进程中没有空闲的thread的时候(空闲thread也就是在监听binder的thread),
//也没有在处理中的spawn thread,且thread数量小于max_threads,那么要求user层
//去启动一个新的thread备用。user层会发送BC_REGISTER_LOOPER这个cmd,来告诉binder request的thread已经启动。
if (proc->requested_threads + proc->ready_threads == 0 &&
proc->requested_threads_started < proc->max_threads &&
(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED)) /* the user-space code fails to */
/*spawn a new thread if we leave this out */) {
proc->requested_threads++;
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BR_SPAWN_LOOPER\n",
proc->pid, thread->pid);
if (put_user(BR_SPAWN_LOOPER, (uint32_t __user *)buffer))
return -EFAULT;
binder_stat_br(proc, thread, BR_SPAWN_LOOPER);
}
return 0;
}
binder_thread_read()函数,主要是等待thread/proc的todo list中的work并执行。
binder_thread_read()函数的结束部分的代码,我们注意一下:如果当前的thread是专门和binder交互的thread,并且发现当前process中和binder交互的thread都不处于空闲状态(空闲也就是在wait work的状态),那么在这里binder会写入command BR_SPAWN_THREAD要求user空间去启动一个新的thread来和binder交互,直到达到了max thread的限制。max thread的就是我们在SampleService的main函数中设置的。
//Just set as surfaceflinger, we will check it later.
ProcessState::self()->setThreadPoolMaxThreadCount(4);
BR_SPAWN_LOOPER在 IPCThreadState::executeCommand()函数的处理如下:
case BR_SPAWN_LOOPER:
mProcess->spawnPooledThread(false);
break;
spawnPooledThread(false)启动了一个PoolThread和binder交互,BR_SPAWN_LOOPER中启动的PoolThread最终还是调用了IPCThreadState::JoinThreadState(),和我们在SampleService里面调用差异是参数isMain的不同,这个参数影响了下面的代码:
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
最终是向binder传递了cmd BC_REGISTER_LOOPER,这个cmd一样是在binder的binder_thread_write()函数中处理:
case BC_REGISTER_LOOPER:
//告诉kernel,BR_SPAWN_LOOPER要求启动的thread已经启动,开始进入looper交互。
binder_debug(BINDER_DEBUG_THREADS,
"%d:%d BC_REGISTER_LOOPER\n",
proc->pid, thread->pid);
if (thread->looper & BINDER_LOOPER_STATE_ENTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called after BC_ENTER_LOOPER\n",
proc->pid, thread->pid);
} else if (proc->requested_threads == 0) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("%d:%d ERROR: BC_REGISTER_LOOPER called without request\n",
proc->pid, thread->pid);
} else {
//更新request thread的记录。
proc->requested_threads--;
proc->requested_threads_started++;
}
thread->looper |= BINDER_LOOPER_STATE_REGISTERED;
break;
结合binder_thread_read()结束部分返回BR_SPAWN_LOOPER的代码,这部分的代码逻辑比较清晰了:
到这里,我们又可以回到user层了,现在我们的read buffer中有2个command:BR_NOOP, BR_TRANSACTION_COMPLETE, waitForResponse()函数检查得到数据后返回到IPCThreadState::waitForResponse()函数中去,首先处理的command是BR_NOOP,BR_NOOP处理在 IPCThreadState::executeCommand()函数中:
case BR_NOOP:
break;
看起来和名字一样,只是一个空命令。函数继续循环进入talkWithDriver(),因为read buffer还未空,所以不会read,又因为没有新数据写入,write size为0,所以talkWithDriver()直接返回,继续waitForResponse()的中的cmd处理。
case BR_TRANSACTION_COMPLETE:
if (!reply && !acquireResult) goto finish;
break;
对于我们当前的场景,reply非空,函数继续循环进入talkWithDriver(),因为read buffer还未空,所以不会read,又因为没有新数据写入,write size为0,所以talkWithDriver()直接返回,继续waitForResponse()的中的cmd处理。
case BINDER_WORK_TRANSACTION: {
//这个work是binder_transaction的一个成员,从这个work地址计算出binder_transaction的对象的地址。
t = container_of(w, struct binder_transaction, work);
} break;
首先获取到对应的binder_transaction数据,然后进行处理
//将binder_tranasaction中的信息,保存到binder_transaction_data中。
//和binder_transaction()函数中行为相反。
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {
struct binder_node *target_node = t->buffer->target_node;
tr.target.ptr = target_node->ptr;
tr.cookie = target_node->cookie;
t->saved_priority = task_nice(current);
if (t->priority < target_node->min_priority &&
!(t->flags & TF_ONE_WAY))
binder_set_nice(t->priority);
else if (!(t->flags & TF_ONE_WAY) ||
t->saved_priority > target_node->min_priority)
binder_set_nice(target_node->min_priority);
cmd = BR_TRANSACTION;
} else {
tr.target.ptr = NULL;
tr.cookie = NULL;
cmd = BR_REPLY;
}
tr.code = t->code;
tr.flags = t->flags;
tr.sender_euid = from_kuid(current_user_ns(), t->sender_euid);
if (t->from) {
struct task_struct *sender = t->from->proc->tsk;
tr.sender_pid = task_tgid_nr_ns(sender,
task_active_pid_ns(current));
} else {
tr.sender_pid = 0;
}
//转换在binder_thread_write中保留的Parcel数据信息。
tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
//地址转换给user空间的地址,传给binder_transaction_data,避免了copy的动作。
tr.data.ptr.buffer = (void *)t->buffer->data +
proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));
//写入command。
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
//把binder_transaction_data copy给user层。
if (copy_to_user(ptr, &tr, sizeof(tr)))
return -EFAULT;
ptr += sizeof(tr);
trace_binder_transaction_received(t);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_TRANSACTION,
"%d:%d %s %d %d:%d, cmd %d size %zd-%zd ptr %p-%p\n",
proc->pid, thread->pid,
(cmd == BR_TRANSACTION) ? "BR_TRANSACTION" :
"BR_REPLY",
t->debug_id, t->from ? t->from->proc->pid : 0,
t->from ? t->from->pid : 0, cmd,
t->buffer->data_size, t->buffer->offsets_size,
tr.data.ptr.buffer, tr.data.ptr.offsets);
list_del(&t->work.entry);
t->buffer->allow_user_free = 1;
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
//同步模式下更新stack信息。
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;
} else {
t->buffer->transaction = NULL;
kfree(t);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
}
break;
}
建立一个binder_transaction_data的结构,填入需要传给servicemanager的数据,除了常规的信息,还包括了SampleService传递下来的Parcel中的数据(在binder_transaction结构中的buffer中),之后把cmd,binder_transaction_data填入到user buffer中,用来返回给servicemanager。
case BR_NOOP:
break;
BR_NOOP直接跳过,处理BR_TRANSACTION,
case BR_TRANSACTION: {
//强制转换kernel传递上来的binder_transaction_data对象,binder_txn和binder_transaction_data的结构是完全一致的。
struct binder_txn *txn = (void *) ptr;
if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
//初始化reply的结构。
bio_init(&reply, rdata, sizeof(rdata), 4);
//用传送来的数据初始化msg。
bio_init_from_txn(&msg, txn);
//调用service_manager注册的svcmgr_handler函数来处理数据。
res = func(bs, txn, &msg, &reply);
//返回reply数据。
binder_send_reply(bs, &reply, txn->data, res);
}
ptr += sizeof(*txn) / sizeof(uint32_t);
break;
}
binder_txn和kernel的binder_transaction_data结构是完全对应的,所以这边直接把将ptr强制转换成了binder_txn指针。
struct binder_txn
{
void *target;
void *cookie;
uint32_t code;
uint32_t flags;
uint32_t sender_pid;
uint32_t sender_euid;
uint32_t data_size;
uint32_t offs_size;
void *data;
void *offs;
};
binder_io是和Parcel的角色类似,保存了data和objects数组的信息:
//和Parcel保留的数据类似,只是结构简化了。
struct binder_io
{
//data,offs是读去data0和offs0的指针。
char *data; /* pointer to read/write from */
uint32_t *offs; /* array of offsets */
uint32_t data_avail; /* bytes available in data buffer */
uint32_t offs_avail; /* entries available in offsets array */
//data0是保留的data数据的起始地址。
char *data0; /* start of data buffer */
//保存了objects offset数据的起始地址。
uint32_t *offs0; /* start of offsets buffer */
uint32_t flags;
uint32_t unused;
};
看看svcmgr_handler如何处理传入的PING_TRANSACTION:
int svcmgr_handler(struct binder_state *bs,
struct binder_txn *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
unsigned len;
void *ptr;
uint32_t strict_policy;
int allow_isolated;
// ALOGI("target=%p code=%d pid=%d uid=%d\n",
// txn->target, txn->code, txn->sender_pid, txn->sender_euid);
//确认数据是传送给service manager的,target = 0是正确的。
if (txn->target != svcmgr_handle)
return -1;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don't propagate it
// further (since we do no outbound RPCs anyway).
strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len);
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
fprintf(stderr,"invalid id %s\n", str8(s));
return -1;
}
......
return 0;
}
对于SampleService本次trnasact的来说,Parcel中是没有数据的,所以,msg中的data,offset中都没有有效的数据,检测interface的时候,会返回-1。返回后,调用binder_send_reply()把返回值写给binder:
void binder_send_reply(struct binder_state *bs,
struct binder_io *reply,
void *buffer_to_free,
int status)
{
struct {
uint32_t cmd_free;
void *buffer;
uint32_t cmd_reply;
struct binder_txn txn;
} __attribute__((packed)) data;
//发送BC_FREE_BUFFER的command。
data.cmd_free = BC_FREE_BUFFER;
data.buffer = buffer_to_free;
//发送BC_REPLY的command。
data.cmd_reply = BC_REPLY;
data.txn.target = 0;
data.txn.cookie = 0;
data.txn.code = 0;
if (status) {//status非0时候,结果异常,直接将返回值传给binder。
data.txn.flags = TF_STATUS_CODE;
data.txn.data_size = sizeof(int);
data.txn.offs_size = 0;
data.txn.data = &status;
data.txn.offs = 0;
} else {//status为0,结果正常,将reply中的数据写回给binder。
data.txn.flags = 0;
data.txn.data_size = reply->data - reply->data0;
data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);
data.txn.data = reply->data0;
data.txn.offs = reply->offs0;
}
//将数据写回给binder。
binder_write(bs, &data, sizeof(data));
}
注意binder_send_reply()出了发送了两个command,BC_FREE_BUFFER和BC_REPLY。
int binder_write(struct binder_state *bs, void *data, unsigned len)
{
//binder_write_read在kernel中定义,组织数据写给binder。
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (unsigned) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder_write: ioctl failed (%s)\n",
strerror(errno));
}
return res;
}
我们再次到binder_thread_write()看看如何处理这两个command的:
case BC_FREE_BUFFER: {
void __user *data_ptr;
struct binder_buffer *buffer;
//获取user层传过来的指针,这个指针是binder_buffer.data对应的user空间地址。
if (get_user(data_ptr, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
//根据指针查找对应的binder_buffer。
buffer = binder_buffer_lookup(proc, data_ptr);
if (buffer == NULL) {
binder_user_error("%d:%d BC_FREE_BUFFER u%p no match\n",
proc->pid, thread->pid, data_ptr);
break;
}
if (!buffer->allow_user_free) {
binder_user_error("%d:%d BC_FREE_BUFFER u%p matched unreturned buffer\n",
proc->pid, thread->pid, data_ptr);
break;
}
binder_debug(BINDER_DEBUG_FREE_BUFFER,
"%d:%d BC_FREE_BUFFER u%p found buffer %d for %s transaction\n",
proc->pid, thread->pid, data_ptr, buffer->debug_id,
buffer->transaction ? "active" : "finished");
//reset引用的地方。
if (buffer->transaction) {
buffer->transaction->buffer = NULL;
buffer->transaction = NULL;
}
//异步操作,并且存在target_node(表明是一个transaction)
if (buffer->async_transaction && buffer->target_node) {
BUG_ON(!buffer->target_node->has_async_transaction);
if (list_empty(&buffer->target_node->async_todo))
buffer->target_node->has_async_transaction = 0;
else
list_move_tail(buffer->target_node->async_todo.next, &thread->todo);
}
trace_binder_transaction_buffer_release(buffer);
//处理传递的object的decrease ref。
binder_transaction_buffer_release(proc, buffer, NULL);
//释放binder_buffer。
binder_free_buf(proc, buffer);
break;
}
这个command释放的对象是binder_txn.data,这个指针是servicemanager在binder_thread_read()中将binder_transaction.binder_buffer.data转换到user空间得到的。所以这边free的对象实际就是SampleService在binder_thread_write()中申请的binder_buffer和他对应的memory。
static void binder_free_buf(struct binder_proc *proc,
struct binder_buffer *buffer)
{
size_t size, buffer_size;
buffer_size = binder_buffer_size(proc, buffer);
size = ALIGN(buffer->data_size, sizeof(void *)) +
ALIGN(buffer->offsets_size, sizeof(void *));
binder_debug(BINDER_DEBUG_BUFFER_ALLOC,
"%d: binder_free_buf %p size %zd buffer_size %zd\n",
proc->pid, buffer, size, buffer_size);
BUG_ON(buffer->free);
BUG_ON(size > buffer_size);
BUG_ON(buffer->transaction != NULL);
BUG_ON((void *)buffer < proc->buffer);
BUG_ON((void *)buffer > proc->buffer + proc->buffer_size);
//update free_async_space。
if (buffer->async_transaction) {
proc->free_async_space += size + sizeof(struct binder_buffer);
binder_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
"%d: binder_free_buf size %zd async free %zd\n",
proc->pid, size, proc->free_async_space);
}
//释放物理page。
binder_update_page_range(proc, 0,
(void *)PAGE_ALIGN((uintptr_t)buffer->data),
(void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK),
NULL);
//从allocated_buffers中拿掉改结点。
rb_erase(&buffer->rb_node, &proc->allocated_buffers);
buffer->free = 1;
//插入list后,要进行合并操作。合并操作不需要特殊处理,删除掉地址大的那个结点即可。
//检查next结点是否是free的,如果是,需要进行合并,从list和free tree中删除掉next结点。
if (!list_is_last(&buffer->entry, &proc->buffers)) {
struct binder_buffer *next = list_entry(buffer->entry.next,
struct binder_buffer, entry);
if (next->free) {
//从binder_proc.free_buffers中拿掉next结点。
rb_erase(&next->rb_node, &proc->free_buffers);
//从binder_proc.buffers的list中拿掉这个buffer结点。
binder_delete_free_buffer(proc, next);
}
}
if (proc->buffers.next != &buffer->entry) {
//检查prev结点,如果结点有效,并且free,那么当前的节点直接删除,和prev结点合并。
struct binder_buffer *prev = list_entry(buffer->entry.prev,
struct binder_buffer, entry);
if (prev->free) {
binder_delete_free_buffer(proc, buffer);
rb_erase(&prev->rb_node, &proc->free_buffers);
buffer = prev;
}
}
//插入结点到binder_proc.free_buffers中去。
binder_insert_free_buffer(proc, buffer);
}
和binder_alloc_buf()函数对照,比较容易看明白了。
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply)
{
......
if (reply) {//command是BC_REPLY
in_reply_to = thread->transaction_stack;
if (in_reply_to == NULL) {
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
goto err_empty_call_stack;
}
binder_set_nice(in_reply_to->saved_priority);
if (in_reply_to->to_thread != thread) {
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
return_error = BR_FAILED_REPLY;
in_reply_to = NULL;
goto err_bad_call_stack;
}
//reset当前thread的transaaction_stack
thread->transaction_stack = in_reply_to->to_parent;
target_thread = in_reply_to->from;
if (target_thread == NULL) {
return_error = BR_DEAD_REPLY;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
return_error = BR_FAILED_REPLY;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
target_proc = target_thread->proc;
} else {//command为BC_TRANSACTION.
......
}
//target_thread在transaction的时候,可能不存在,reply时候一定存在。
if (target_thread) {
e->to_thread = target_thread->pid;
target_list = &target_thread->todo;
target_wait = &target_thread->wait;
} else {
target_list = &target_proc->todo;
target_wait = &target_proc->wait;
}
......
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;//同步模式下的时候,记录from。
else
t->from = NULL;//reply时候,不需要记录from了。
......
if (reply) {
BUG_ON(t->buffer->async_transaction != 0);
//清除掉binder_tranasaction发起thread的transaction_stack。
binder_pop_transaction(target_thread, in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {
BUG_ON(t->buffer->async_transaction != 0);
t->need_reply = 1;
//transaction_stack指向当前thread的最后一个binder_transaction,通过from_parent进行链接。
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
} else {
BUG_ON(target_node == NULL);
BUG_ON(t->buffer->async_transaction != 1);
if (target_node->has_async_transaction) {
target_list = &target_node->async_todo;
target_wait = NULL;
} else
target_node->has_async_transaction = 1;
}
//把新的binder_transaction加入到target的todo list中。
t->work.type = BINDER_WORK_TRANSACTION;
list_add_tail(&t->work.entry, target_list);
//在发出transaction的thread的todo list中加入complete的work。
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
list_add_tail(&tcomplete->entry, &thread->todo);
if (target_wait)
wake_up_interruptible(target_wait);
return;
......
}
reply在binder_transaction()中做了下面几个动作:
对于我们的场景来说,step 4不会执行,因为ServiceManager传下来的数据中只有一个返回值-1。在函数执行完毕后,ServiceManager的list中又加入了一个BINDER_WORK_TRANSACTION_COMPLETE的work。
在binder_thread_write()结束之后,servicemanager在binder_thread_read()中又会read到BINDER_WORK_TRANSACTION_COMPLETE返回的command BR_TRANSACTION_COMPLETE并返回。
对于ServiceManager来说,binder_thread_read()结束部分的BR_SPAWN_LOOPER的cmd是永远不会被写入,因为他的Max thread没有设置,默认为0,永远不会满足(我们ps -t也可以看到servicemanager中只有一个thread)。
继续返回到user层在ServiceManager中处理:
case BR_TRANSACTION_COMPLETE:
break;
处理完毕后继续进入binder中,在binder_thread_read()中等待新的work来到。
SampleService端Transact()接受Reply
这个时候SampleService在binder_thread_read()中等待到了ServiceManager发来的BINDER_WORK_TRNASACTION的work,收到work后的动作和ServiceManager收到同样的work时候处理基本类似,唯一差异是最终的cmd:
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {//transaction cmd时候。
......
} else {//reply cmd时候,reply时候target_node为null。
tr.target.ptr = NULL;
tr.cookie = NULL;
cmd = BR_REPLY;
}
对于我们当前的场景,t->buffer->target_node为NULL,因为ServiceManager在binder_trnasaction()中没有对它赋值。
所以此时从binder中返回到user层时候,SampleService的带了cmd: BR_NOOP和BR_REPLY,直接看看BR_REPLY的处理:
case BR_REPLY:
{
binder_transaction_data tr;
err = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
if (err != NO_ERROR) goto finish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
......
} else {
//ServiceManager返回的flag为TF_STATUS_CODE,buffer中保存的PING_TRANSACTION处理的返回值-1.
err = *static_cast(tr.data.ptr.buffer);
freeBuffer(NULL,
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), this);
}
} else {
......
}
}
goto finish;
这里我们得到了返回值err = -1,并调用freeBuffer():
void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t dataSize,
const size_t* objects, size_t objectsSize,
void* cookie)
{
//和binder.c中的binder_send_reply()中做的动作是一样的,让binder去释放掉传回的binder_transaction_data.binder_buffer的内存。
//ALOGI("Freeing parcel %p", &parcel);
IF_LOG_COMMANDS() {
alog << "Writing BC_FREE_BUFFER for " << data << endl;
}
ALOG_ASSERT(data != NULL, "Called with NULL data");
if (parcel != NULL) parcel->closeFileDescriptors();
IPCThreadState* state = self();
state->mOut.writeInt32(BC_FREE_BUFFER);
state->mOut.writeInt32((int32_t)data);
}
freeBuffer和binder.c中的binder_send_reply()中第一个command是一样的意义,让binder去释放binder_transaction_data.binder_buffer的内存,这个内存是ServiceManager reply时在binder_transaction()中候申请的。
最终,我们看到了IPCThreadState::self()->transact(0, IBinder::PING_TRANSACTION, data, NULL, 0)整个都执行完毕了,返回了一个-1的值出来,if (status == DEAD_OBJECT)
之后的出错判断不成功,-1这个值表明了ServiceManager是存在的,所以程序继续往下执行。
这边,我们总结下binder中transact()中的动作:
3.3.1.1.2 new BpBinder(handle);
这行代码就是建立了一个新的BpBinder对象。BpBinder::BpBinder(int32_t handle)
: mHandle(handle)
, mAlive(1)
, mObitsSent(0)
, mObituaries(NULL)
{
ALOGV("Creating BpBinder %p handle %d\n", this, mHandle);
//设置object的delete是当weak ref为0的时候发生。默认情况下是OBJECT_LIFETIME_STRONG。
extendObjectLifetime(OBJECT_LIFETIME_WEAK);
//增加handle的weak reference。
IPCThreadState::self()->incWeakHandle(handle);
}
传入的handle这个值,在user层看就是一个index,在binder中我们也是通过这个去获得了ServiceManager的binder_node来操作,handle在BpBinder中也是主要在和binder通信的时候使用,对于其他的Service的情况下我们猜测应该是有类似的作用,这个后续分析中会看到。
void IPCThreadState::incWeakHandle(int32_t handle)
{
LOG_REMOTEREFS("IPCThreadState::incWeakHandle(%d)\n", handle);
//write BC_INCREFS command,后续transact中会一起被发送给binder。
mOut.writeInt32(BC_INCREFS);
mOut.writeInt32(handle);
}
直接看下Binder中会如何处理BC_INCREFS,直接到binder_thread_write()函数中找到:
case BC_INCREFS://增加weak reference
case BC_ACQUIRE://增加strong reference。
case BC_RELEASE://减少strong reference.
case BC_DECREFS: {//减少weak reference
uint32_t target;
struct binder_ref *ref;
const char *debug_string;
if (get_user(target, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (target == 0 && binder_context_mgr_node &&
(cmd == BC_INCREFS || cmd == BC_ACQUIRE)) {
//查找binder_context_mgr_node对应的binder_ref对象,如果不存在就建立一个。
ref = binder_get_ref_for_node(proc,
binder_context_mgr_node);
if (ref->desc != target) {
binder_user_error("%d:%d tried to acquire reference to desc 0, got %d instead\n",
proc->pid, thread->pid,
ref->desc);
}
} else//查找对应的binder_ref对象,不会主动建立。
ref = binder_get_ref(proc, target);
if (ref == NULL) {
binder_user_error("%d:%d refcount change on invalid ref %d\n",
proc->pid, thread->pid, target);
break;
}
switch (cmd) {
case BC_INCREFS:
debug_string = "IncRefs";
binder_inc_ref(ref, 0, NULL);
break;
case BC_ACQUIRE:
debug_string = "Acquire";
binder_inc_ref(ref, 1, NULL);
break;
case BC_RELEASE:
debug_string = "Release";
binder_dec_ref(ref, 1);
break;
case BC_DECREFS:
default:
debug_string = "DecRefs";
binder_dec_ref(ref, 0);
break;
}
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s ref %d desc %d s %d w %d for node %d\n",
proc->pid, thread->pid, debug_string, ref->debug_id,
ref->desc, ref->strong, ref->weak, ref->node->debug_id);
break;
}
这段代码中主要是查找binder_ref节点,然后对binder_ref进行操作。对于我们当前的case,我们是在本地进程中查找ServiceManager对应的binder_ref,找不到就去创建:
static struct binder_ref *binder_get_ref_for_node(struct binder_proc *proc,
struct binder_node *node)
{
struct rb_node *n;
struct rb_node **p = &proc->refs_by_node.rb_node;
struct rb_node *parent = NULL;
struct binder_ref *ref, *new_ref;
//在refs_by_node中查找。
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_node);
if (node < ref->node)
p = &(*p)->rb_left;
else if (node > ref->node)
p = &(*p)->rb_right;
else
return ref;
}
//查找失败,建立binder_ref。
new_ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (new_ref == NULL)
return NULL;
binder_stats_created(BINDER_STAT_REF);
new_ref->debug_id = ++binder_last_id;
new_ref->proc = proc;
new_ref->node = node;
rb_link_node(&new_ref->rb_node_node, parent, p);
rb_insert_color(&new_ref->rb_node_node, &proc->refs_by_node);
//ServiceManager的desc是0,其他都从1开始,这样0就保留给ServiceManager。
//在refs_by_desc tree中遍历,找到可用的desc。
new_ref->desc = (node == binder_context_mgr_node) ? 0 : 1;
for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) {
ref = rb_entry(n, struct binder_ref, rb_node_desc);
if (ref->desc > new_ref->desc)
break;
new_ref->desc = ref->desc + 1;
}
//将结点加入到refs_by_desc tree中。
p = &proc->refs_by_desc.rb_node;
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_desc);
if (new_ref->desc < ref->desc)
p = &(*p)->rb_left;
else if (new_ref->desc > ref->desc)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new_ref->rb_node_desc, parent, p);
rb_insert_color(&new_ref->rb_node_desc, &proc->refs_by_desc);
//将binder_ref结点Link到binder_node.refs list中去。
if (node) {
hlist_add_head(&new_ref->node_entry, &node->refs);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d new ref %d desc %d for node %d\n",
proc->pid, new_ref->debug_id, new_ref->desc,
node->debug_id);
} else {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d new ref %d desc %d for dead node\n",
proc->pid, new_ref->debug_id, new_ref->desc);
}
return new_ref;
}
ServiceManager建立的binder_ref.desc也是0,和user进程中的idx保持了一致。后续使用binder_get_ref()即可找到对应的binder_ref。
static int binder_inc_ref(struct binder_ref *ref, int strong,
struct list_head *target_list)
{
//本进程中第一次引用binder_ref,对它引用的binder_node,同时increase reference。避免binder_node先释放造成问题。
int ret;
if (strong) {
if (ref->strong == 0) {
ret = binder_inc_node(ref->node, 1, 1, target_list);
if (ret)
return ret;
}
ref->strong++;
} else {
if (ref->weak == 0) {
ret = binder_inc_node(ref->node, 0, 1, target_list);
if (ret)
return ret;
}
ref->weak++;
}
return 0;
}
从这个函数中,我们可以看出来binder_ref和binder_node的关系,binder_ref代表的就是对binder_node的reference的操作。
e->binder = b;
if (b) e->refs = b->getWeakRefs();
result = b;
注意result = b这行代码,result是spvoid BpBinder::onFirstRef()
{
ALOGV("onFirstRef BpBinder %p handle %d\n", this, mHandle);
IPCThreadState* ipc = IPCThreadState::self();
if (ipc) ipc->incStrongHandle(mHandle);
}
void IPCThreadState::incStrongHandle(int32_t handle)
{
LOG_REMOTEREFS("IPCThreadState::incStrongHandle(%d)\n", handle);
//write BC_ACQUIRE command,后续transact中会一起被发送给binder。
mOut.writeInt32(BC_ACQUIRE);
mOut.writeInt32(handle);
}
BC_ACQUIRE和前面的BC_INCREFS执行流程基本一致,只是最后调用binder_inc_ref的参数不一样,它要求increase的是strong ref。
3.3.1.1.1 SampleService端的流程
在获取了sp
sm->addService(String16("SampleService"), samplesrv, false);
调用是BpServiceManager的addService函数:
virtual status_t addService(const String16& name, const sp& service,
bool allowIsolated)
{
Parcel data, reply;
//写入消息头部,包括strictmode标志,和interface的description string。
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
//写入注册的service name。
data.writeString16(name);
//写入注册的service,重点注意。
data.writeStrongBinder(service);
data.writeInt32(allowIsolated ? 1 : 0);
//向service 传送add service的command。
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;
}
write参数主要writeStrongBinder(service)中做了什么:
status_t Parcel::writeStrongBinder(const sp& val)
{
return flatten_binder(ProcessState::self(), val, this);
}
status_t flatten_binder(const sp& proc,
const sp& binder, Parcel* out)
{
//flat_binder_object在kernel的biner.h中定义。
flat_binder_object obj;
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
if (binder != NULL) {
//localBinder()对于service端来说返回非空,对于client端返回NULL。
IBinder *local = binder->localBinder();
if (!local) {//remote binder:BpBinder
BpBinder *proxy = binder->remoteBinder();
if (proxy == NULL) {
ALOGE("null proxy");
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.type = BINDER_TYPE_HANDLE;//表明是remote的binder。
obj.handle = handle;
obj.cookie = NULL;
} else {//local binder:BBinder
obj.type = BINDER_TYPE_BINDER;//表明是本地的binder
obj.binder = local->getWeakRefs();
obj.cookie = local;
}
} else {//when it happen?used as local binder。
obj.type = BINDER_TYPE_BINDER;
obj.binder = NULL;
obj.cookie = NULL;
}
//将flat_binder_object写入到buffer中去。
return finish_flatten_binder(binder, obj, out);
}
当前的场景中SampleService是localBinder。看看remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
status_t BpBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// Once a binder has died, it will never come back to life.
if (mAlive) {
status_t status = IPCThreadState::self()->transact(
mHandle, code, data, reply, flags);
if (status == DEAD_OBJECT) mAlive = 0;
return status;
}
return DEAD_OBJECT;
}
最终还是调用到了IPCThreadState::transact()中去了,这里的mHanlde是ServiceManager的handle,值为0。flag没有设置,默认为0。
binder中对这些数据的处理主要的流程和之前PING_TRANSACTION处理基本一致,我们主要需要注意一下,对于Parcel中的object的处理,这部分是PING_TRANSACTION中没有的:
//local binder object的处理,means BBinder。
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
struct binder_ref *ref;
//查找/建立对应的binder_node。
//除去ServiceManager的binder_node,其他所有的binder_node都在这边建立,在调用ServiceManager::addService的时候调用到。
struct binder_node *node = binder_get_node(proc, fp->binder);
if (node == NULL) {
node = binder_new_node(proc, fp->binder, fp->cookie);
if (node == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_new_node_failed;
}
node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
}
//检查cookie也就是service的指针是否一致。
if (fp->cookie != node->cookie) {
binder_user_error("%d:%d sending u%p node %d, cookie mismatch %p != %p\n",
proc->pid, thread->pid,
fp->binder, node->debug_id,
fp->cookie, node->cookie);
goto err_binder_get_ref_for_node_failed;
}
//security权限检测。
if (security_binder_transfer_binder(proc->tsk, target_proc->tsk)) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_for_node_failed;
}
//在target_proc中查找/创建 binder_ref,其中binder_ref.desc在这边被确定。
ref = binder_get_ref_for_node(target_proc, node);
if (ref == NULL) {
return_error = BR_FAILED_REPLY;
goto err_binder_get_ref_for_node_failed;
}
//将local binder转换成remote binder信息,之后会被target proc读取使用。
if (fp->type == BINDER_TYPE_BINDER)
fp->type = BINDER_TYPE_HANDLE;
else
fp->type = BINDER_TYPE_WEAK_HANDLE;
//desc在binder_get_ref_for_node()中被确定,会被作为handle。
fp->handle = ref->desc;
//添加BINDER_WORK_NODE work到thread的todo list。
binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE,
&thread->todo);
trace_binder_transaction_node_to_ref(t, node, ref);
binder_debug(BINDER_DEBUG_TRANSACTION,
" node %d u%p -> ref %d desc %d\n",
node->debug_id, node->ptr, ref->debug_id,
ref->desc);
} break;
从这边的代码,我们已经可以看出binder_node,binder_ref这两个对象的差异:
BINDER_WORK_NODE在binder_thread_read()中被处理:
case BINDER_WORK_NODE: {
//更新对于Binder_node对应的BBinder的refs。这里主要用node->has_strong_ref,has_weak_ref来标志是否要更新user层,减少更新user层的次数。
struct binder_node *node = container_of(w, struct binder_node, work);
uint32_t cmd = BR_NOOP;
const char *cmd_name;
int strong = node->internal_strong_refs || node->local_strong_refs;
int weak = !hlist_empty(&node->refs) || node->local_weak_refs || strong;
if (weak && !node->has_weak_ref) {
cmd = BR_INCREFS;
cmd_name = "BR_INCREFS";
node->has_weak_ref = 1;
node->pending_weak_ref = 1;//flag表明等待user层反馈。
node->local_weak_refs++;//在BC_INCREFS_DONE中通过BINDER_DEC_NODE来减去。
} else if (strong && !node->has_strong_ref) {
//need increase strong reference.
cmd = BR_ACQUIRE;
cmd_name = "BR_ACQUIRE";
node->has_strong_ref = 1;
node->pending_strong_ref = 1;//flag表明等待user层反馈。
node->local_strong_refs++;//在BC_QCQUIRE_DONE中通过BINDER_DEC_NODE来减去。
} else if (!strong && node->has_strong_ref) {
//no reference,need to free.
cmd = BR_RELEASE;
cmd_name = "BR_RELEASE";
node->has_strong_ref = 0;
} else if (!weak && node->has_weak_ref) {
cmd = BR_DECREFS;
cmd_name = "BR_DECREFS";
node->has_weak_ref = 0;
}
if (cmd != BR_NOOP) {
if (put_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (put_user(node->ptr, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
if (put_user(node->cookie, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
binder_stat_br(proc, thread, cmd);
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s %d u%p c%p\n",
proc->pid, thread->pid, cmd_name, node->debug_id, node->ptr, node->cookie);
} else {
list_del_init(&w->entry);
if (!weak && !strong) {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%p c%p deleted\n",
proc->pid, thread->pid, node->debug_id,
node->ptr, node->cookie);
rb_erase(&node->rb_node, &proc->nodes);
kfree(node);
binder_stats_deleted(BINDER_STAT_NODE);
} else {
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d:%d node %d u%p c%p state unchanged\n",
proc->pid, thread->pid, node->debug_id, node->ptr,
node->cookie);
}
}
} break;
这里的逻辑,主要是依赖binder_node.has_strong_ref,has_weak_refs来确定是否要对user层的BBinder做操作,这样不会出现对user层的频繁操作,减少了时间消耗。
case BR_ACQUIRE:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
ALOG_ASSERT(refs->refBase() == obj,
"BR_ACQUIRE: object %p does not match cookie %p (expected %p)",
refs, obj, refs->refBase());
//increase strong refs.
obj->incStrong(mProcess.get());
IF_LOG_REMOTEREFS() {
LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj);
obj->printRefs();
}
//向binder写入BC_ACQUIRE_DONE。
mOut.writeInt32(BC_ACQUIRE_DONE);
mOut.writeInt32((int32_t)refs);
mOut.writeInt32((int32_t)obj);
break;
在操作后又写入了BC_ACQUIRE_DONE的命令给binder,binder中的处理如下:
case BC_INCREFS_DONE:
case BC_ACQUIRE_DONE: {
void __user *node_ptr;
void *cookie;
struct binder_node *node;
if (get_user(node_ptr, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
if (get_user(cookie, (void * __user *)ptr))
return -EFAULT;
ptr += sizeof(void *);
node = binder_get_node(proc, node_ptr);
if (node == NULL) {
binder_user_error("%d:%d %s u%p no match\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ?
"BC_INCREFS_DONE" :
"BC_ACQUIRE_DONE",
node_ptr);
break;
}
if (cookie != node->cookie) {
binder_user_error("%d:%d %s u%p node %d cookie mismatch %p != %p\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ?
"BC_INCREFS_DONE" : "BC_ACQUIRE_DONE",
node_ptr, node->debug_id,
cookie, node->cookie);
break;
}
if (cmd == BC_ACQUIRE_DONE) {
if (node->pending_strong_ref == 0) {
binder_user_error("%d:%d BC_ACQUIRE_DONE node %d has no pending acquire request\n",
proc->pid, thread->pid,
node->debug_id);
break;
}
node->pending_strong_ref = 0;//reset flag set in BINDER_WORK_NODE.
} else {
if (node->pending_weak_ref == 0) {
binder_user_error("%d:%d BC_INCREFS_DONE node %d has no pending increfs request\n",
proc->pid, thread->pid,
node->debug_id);
break;
}
node->pending_weak_ref = 0;//reset flag set in BINDER_WORK_NODE.
}
//执行 local_strong_refs or local_weak_refs descrease, 在binder_thread_read()中处理BINDER_WORK_NODE中做了 increase。
binder_dec_node(node, cmd == BC_ACQUIRE_DONE, 0);
binder_debug(BINDER_DEBUG_USER_REFS,
"%d:%d %s node %d ls %d lw %d\n",
proc->pid, thread->pid,
cmd == BC_INCREFS_DONE ? "BC_INCREFS_DONE" : "BC_ACQUIRE_DONE",
node->debug_id, node->local_strong_refs, node->local_weak_refs);
break;
}
处理完后,进入到binder_thread_read()中等待work。
case SVC_MGR_ADD_SERVICE:
//获取add的service的name.
s = bio_get_string16(msg, &len);
//获得对应的handle。
ptr = bio_get_ref(msg);
allow_isolated = bio_get_uint32(msg) ? 1 : 0;
if (do_add_service(bs, s, len, ptr, txn->sender_euid, allow_isolated))
return -1;
break;
看下bio_get_ref():
void *bio_get_ref(struct binder_io *bio)
{
//binder_object和flat_binder_object结构一样。
struct binder_object *obj;
//从binder_io中读取binder_object,实际就是从传递来的binder_transaction_data中读取flat_binder_object。
obj = _bio_get_obj(bio);
if (!obj)
return 0;
//remote handler,在binder中我们已经把pointer转换成了binder_ref.desc,也就是handle了。
if (obj->type == BINDER_TYPE_HANDLE)
return obj->pointer;
return 0;
}
在binder中我们已经把flat_binder_object转换成BINDER_TYPE_HANDLE类型,pointer也变成了binder_ref.desc了。
int do_add_service(struct binder_state *bs,
uint16_t *s, unsigned len,
void *ptr, unsigned uid, int allow_isolated)
{
struct svcinfo *si;
//ALOGI("add_service('%s',%p,%s) uid=%d\n", str8(s), ptr,
// allow_isolated ? "allow_isolated" : "!allow_isolated", uid);
if (!ptr || (len == 0) || (len > 127))
return -1;
if (!svc_can_register(uid, s)) {
ALOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n",
str8(s), ptr, uid);
return -1;
}
//查找是否已经有注册了这样的service。
si = find_svc(s, len);
if (si) {
if (si->ptr) {
ALOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED, OVERRIDE\n",
str8(s), ptr, uid);
svcinfo_death(bs, si);
}
si->ptr = ptr;
} else {
//添加新的service信息。
si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
if (!si) {
ALOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n",
str8(s), ptr, uid);
return -1;
}
si->ptr = ptr;
si->len = len;
memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
si->name[len] = '\0';
si->death.func = svcinfo_death;
si->death.ptr = si;list
si->allow_isolated = allow_isolated;
si->next = svclist;
svclist = si;
}
//写入BC_ACQUIRE命令。
binder_acquire(bs, ptr);
//写入BC_REQUEST_DEATH_NOTIFICATION命令。
binder_link_to_death(bs, ptr, &si->death);
return 0;
}
在do_add_service()中,将service信息加入list后,向binder中写了两个command,BC_ACQUIRE和BC_REQUEST_DEATH_NOTIFICAITON。
bio_put_uint32(reply, 0);
最终,回到binder_parse()中,调用binder_send_reply(),在write buffer中填入BC_FREE_BUFFER和BC_REPLY。到了这里,我们的write buffer中已经包含了以下的信息:
我们到binder中看看每个command的处理:
BC_ACQUIRE
这个command在binder_thread_write中处理,根据传入的desc值找到对应的binder_ref,并调用binder_inc_ref()增加strong refs。
BC_REQUEST_DEATH_NOTIFICATION
为对应的binder_ref构造binder_ref_death对象。
BC_FREE_BUFFER
这个command我们在分析PING_TRANSACTION时候看过,主要是释放在binder_transaction中申请的binder_buffer,这里和之前主要的差异在于binder_transaction_buffer_release()对于buffer中包含的object的处理,我们当前的buffer中包含了一个BINDER_TYPE_BINDER类型的object,在这里需要进行下面的操作:
binder_dec_ref(ref, fp->type == BINDER_TYPE_HANDLE);
这和我们之前在binder_transaction()中的转换object时所做的下面操作对应:
binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE,
&thread->todo);
BC_REPLY
之后,在binder_thread_read()中work BINDER_WORK_TRANSACTION_COMPLETE被转为BR_TRANSACTION_COMPLETE command返回给user层,ServiceManager会处理这个command(没有执行任何动作)。
3.3.1.1.3 SampleService处理reply信息
SamleService这个时候会接收到BINDER_WORK_TRANSACTION的work,之后处理和PING_TRANSACTION中就是一样的了,带回一个command BR_REPLY,带有binder_transaction_data,其中只有返回值信息0。
case BR_REPLY:
{
binder_transaction_data tr;
err = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
if (err != NO_ERROR) goto finish;
if (reply) {
if ((tr.flags & TF_STATUS_CODE) == 0) {
//将binder_transaction_data中的buffer传给reply Parcel,这些buffer不能直接用free去释放,
//注意最后两个参数是用来释放这些buffer的,所以Parcel在析构的时候调用了freeBuffer()函数去释放。
reply->ipcSetDataReference(
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t),
freeBuffer, this);
} else {//只有status code返回,没有数据信息的情况,读取信息后,释放掉buffer。
err = *static_cast(tr.data.ptr.buffer);
freeBuffer(NULL,
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), this);
}
} else {
freeBuffer(NULL,
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), this);
continue;
}
}
goto finish;
IPCThreadState::Transact()处理BR_REPLAY,返回NO_ERROR,BpServiceManager::addService()最终返回NO_ERROR。
return err == NO_ERROR ? reply.readExceptionCode() : err;
-------------------------------------------
by sky