hdu 4948 Kingdom

题目链接

Kingdom

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 194    Accepted Submission(s): 106
Special Judge


Problem Description
Teacher Mai has a kingdom consisting of n cities. He has planned the transportation of the kingdom. Every pair of cities has exactly a one-way road.

He wants develop this kingdom from one city to one city.

Teacher Mai now is considering developing the city w. And he hopes that for every city u he has developed, there is a one-way road from u to w, or there are two one-way roads from u to v, and from v to w, where city v has been developed before.

He gives you the map of the kingdom. Hope you can give a proper order to develop this kingdom.
 

Input
There are multiple test cases, terminated by a line "0".

For each test case, the first line contains an integer n (1<=n<=500).

The following are n lines, the i-th line contains a string consisting of n characters. If the j-th characters is 1, there is a one-way road from city i to city j.

Cities are labelled from 1.
 

Output
If there is no solution just output "-1". Otherwise output n integers representing the order to develop this kingdom.
 

Sample Input
 
   
3 011 001 000 0
 

Sample Output
 
   
1 2 3
题意:n个城市,一对城市之间有且仅有一条单向边,现在一个城市一个城市的发展,每发展一个城市,必须保证前面发展过的城市到它不超过两条边,也就是说要么与它直接相连,要么与它通过一个点间接相连。让你输出发展城市的先后顺序,无解输出-1.
题解:容易想出一种解法,每次都找一个到所有没发展过的点的距离不超过2的点发展,如果不能找到则无解。但是如果暴力求到一个点距离小于等于2的点很可能超时。这题还有更好的做法。首先,因为两点之间一定有一条单向边,所以问题一定是有解的。假设u到v的距离大于2,那么v到u一定有一条边,也就是说v到u的距离一定为1,任意两点之间其中一个一定可以做另一个的前驱,所以问题一定有解。然后,每次找一个点到所有剩下的点的距离不超过2,这个点一定是所有点中出度最大的点。我们可以用反证法证明。假设u为出度最大的点,w1,w2,,wk与u直接相连,假设存在一个点v,使u到v的距离大于2,那么v一定有也与w1,w2,,,wk直接相连,并且v到u一定有条单向边,所以这与假设u为出度最大的点矛盾,所以出度最大的点,到所有点的距离不超过2。代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#define nn 510
#define inff 0x3fffffff
typedef long long LL;
using namespace std;
int n;
char tu[nn][nn];
bool vis[nn];
int a[nn];
int ans[nn];
int main()
{
    int i,j,k;
    while(scanf("%d",&n)&&n)
    {
        for(i=0;imx)
                {
                    mx=a[j];
                    id=j;
                }
            }
            vis[id]=true;
            ans[la++]=id;
            for(k=0;k


你可能感兴趣的:(图论)