题意:
T个测试数据
n个圆
下面 fre x y r 表示圆的频率 坐标和半径
要求:
从频率为400(最小的) 圆 走到频率为789(最大)的圆,再走回来,除起点每个点只能经过一次
问这样的路径是否存在
走法:从400->789时经过的圆频率只增不减, 只能走相交的圆
反之则频率只减不增,也只能走相交的圆
建图:
以789为源点, 400为汇点
其他点拆点拆成2个点,自己连自己,cap=1表示这个点只能走一次
然后跑一边最大流,当汇点流>=2时说明有这样的路径
#include
#include
#include
#include
#include
#include
#define N 605
#define inf 10000
#define ll int
using namespace std;
inline ll Max(ll a,ll b){return a>b?a:b;}
inline ll Min(ll a,ll b){return aq;
q.push(from);
while( !q.empty() ){
int u = q.front(); q.pop();
for(int i = head[u]; i!=-1; i = edge[i].nex)
{
int v = edge[i].to;
if(sign[v]==-1 && edge[i].cap)
{
sign[v] = sign[u] + 1, q.push(v);
if(sign[to] != -1)return true;
}
}
}
return false;
}
int Stack[N*4], top, cur[N*4];
int dinic(int from, int to){
int ans = 0;
while( BFS(from, to) )
{
memcpy(cur, head, sizeof(head));
int u = from; top = 0;
while(1)
{
if(u == to)
{
int flow = inf, loc;//loc 表示 Stack 中 cap 最小的边
for(int i = 0; i < top; i++)
if(flow > edge[ Stack[i] ].cap)
{
flow = edge[Stack[i]].cap;
loc = i;
}
for(int i = 0; i < top; i++)
{
edge[ Stack[i] ].cap -= flow;
edge[Stack[i]^1].cap += flow;
}
ans += flow;
top = loc;
u = edge[Stack[top]].from;
}
for(int i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标
if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break;
if(cur[u] != -1)
{
Stack[top++] = cur[u];
u = edge[ cur[u] ].to;
}
else
{
if( top == 0 )break;
sign[u] = -1;
u = edge[ Stack[--top] ].from;
}
}
}
return ans;
}
ll n;
int main(){
int T, i, j; scanf("%d",&T);
while(T--)
{
memset(head, -1, sizeof(head)); edgenum = 0;
scanf("%d",&n);
for(i = 1; i <= n; i++)
{
scanf("%lf %d %d %d",&p[i].fre,&p[i].x,&p[i].y,&p[i].r);
if(p[i].fre == 400)
t = p[i],i--,n--;
else if(p[i].fre == 789)
s = p[i],i--,n--;
}
if(Cross(s,t)){printf("Game is VALID\n");continue;}
for(i = 1; i <= n; i++)
{
addedge(i,i+n,1);
addedge(i+n,i,0);
if(Cross(p[i],s))
{
addedge(0,i,1);
addedge(i,0,0);
}
if(Cross(p[i],t))
{
addedge(i+n, 2*n+10,1);
addedge(2*n+10,i+n,0);
}
for(j = 1; j <= n; j++)
if(Cross(p[i],p[j]) && i!=j)
{
if(p[i].fre>p[j].fre)
{
addedge(i+n,j,1);
addedge(j,i+n,0);
}
else
{
addedge(j+n,i,1);
addedge(i,j+n,0);
}
}
}
int ans = dinic(0, 2*n+10);
if(ans < 2)printf("Game is NOT VALID\n");
else printf("Game is VALID\n");
}
return 0;
}