sparkStreaming消费kafka-1.0.1方式:direct方式(存储offset到zookeeper)-- 2

参考上篇博文:https://www.cnblogs.com/niutao/p/10547718.html

同样的逻辑,不同的封装

package offsetInZookeeper

/**
  * Created by angel
  */
import java.lang.Object

import kafka.utils.{ZKGroupTopicDirs, ZkUtils}
import org.apache.kafka.clients.consumer.{ConsumerRecord, KafkaConsumer}
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils}
import org.slf4j.LoggerFactory

import scala.collection.JavaConversions._
import scala.reflect.ClassTag
import scala.util.Try
/**
  * Kafka的连接和Offset管理工具类
  *
  * @param zkHosts     Zookeeper地址
  * @param kafkaParams Kafka启动参数
  */
class KafkaManager(zkHosts: String, kafkaParams: Map[String, Object]) extends Serializable {
  //Logback日志对象,使用slf4j框架
  @transient private lazy val log = LoggerFactory.getLogger(getClass)
  //建立ZkUtils对象所需的参数
  val (zkClient, zkConnection) = ZkUtils.createZkClientAndConnection(zkHosts, 10000, 10000)
  //ZkUtils对象,用于访问Zookeeper
  val zkUtils = new ZkUtils(zkClient, zkConnection, false)
  /**
    * 包装createDirectStream方法,支持Kafka Offset,用于创建Kafka Streaming流
    *
    * @param ssc    Spark Streaming Context
    * @param topics Kafka话题
    * @tparam K Kafka消息Key类型
    * @tparam V Kafka消息Value类型
    * @return Kafka Streaming流
    */
  def createDirectStream[K: ClassTag, V: ClassTag](ssc: StreamingContext, topics: Seq[String]): InputDStream[ConsumerRecord[K, V]] = {
    val groupId = kafkaParams("group.id").toString
    val storedOffsets = readOffsets(topics, groupId)
    log.info("Kafka消息偏移量汇总(格式:(话题,分区号,偏移量)):{}", storedOffsets.map(off => (off._1.topic, off._1.partition(), off._2)))
    val kafkaStream = KafkaUtils.createDirectStream[K, V](ssc, PreferConsistent, ConsumerStrategies.Subscribe[K, V](topics, kafkaParams, storedOffsets))
    kafkaStream
  }
  /**
    * 从Zookeeper读取Kafka消息队列的Offset
    *
    * @param topics  Kafka话题
    * @param groupId Kafka Group ID
    * @return 返回一个Map[TopicPartition, Long],记录每个话题每个Partition上的offset,如果还没消费,则offset为0
    */
  def readOffsets(topics: Seq[String], groupId: String): Map[TopicPartition, Long] = {
    val topicPartOffsetMap = collection.mutable.HashMap.empty[TopicPartition, Long]
    val partitionMap = zkUtils.getPartitionsForTopics(topics)
    // /consumers//offsets//
    partitionMap.foreach(topicPartitions => {
      val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, topicPartitions._1)
      topicPartitions._2.foreach(partition => {
        val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + partition
        val tryGetKafkaOffset = Try {
          val offsetStatTuple = zkUtils.readData(offsetPath)
          if (offsetStatTuple != null) {
            log.info("查询Kafka消息偏移量详情: 话题:{}, 分区:{}, 偏移量:{}, ZK节点路径:{}", Seq[AnyRef](topicPartitions._1, partition.toString, offsetStatTuple._1, offsetPath): _*)
            topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)), offsetStatTuple._1.toLong)
          }
        }
        if(tryGetKafkaOffset.isFailure){
          //http://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
          val consumer = new KafkaConsumer[String, Object](kafkaParams)
          val partitionList = List(new TopicPartition(topicPartitions._1, partition))
          consumer.assign(partitionList)
          val minAvailableOffset = consumer.beginningOffsets(partitionList).values.head
          consumer.close()
          log.warn("查询Kafka消息偏移量详情: 没有上一次的ZK节点:{}, 话题:{}, 分区:{}, ZK节点路径:{}, 使用最小可用偏移量:{}", Seq[AnyRef](tryGetKafkaOffset.failed.get.getMessage, topicPartitions._1, partition.toString, offsetPath, minAvailableOffset): _*)
          topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)), minAvailableOffset)
        }
      })
    })
    topicPartOffsetMap.toMap
  }
  /**
    * 保存Kafka消息队列消费的Offset
    *
    * @param rdd            SparkStreaming的Kafka RDD,RDD[ConsumerRecord[K, V]
    * @param storeEndOffset true=保存结束offset, false=保存起始offset
    */
  def persistOffsets[K, V](rdd: RDD[ConsumerRecord[K, V]], storeEndOffset: Boolean = true): Unit = {
    val groupId = kafkaParams("group.id").toString
    val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
    offsetsList.foreach(or => {
      val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, or.topic)
      val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + or.partition
      val offsetVal = if (storeEndOffset) or.untilOffset else or.fromOffset
      zkUtils.updatePersistentPath(zkGroupTopicDirs.consumerOffsetDir + "/" + or.partition, offsetVal + "" /*, JavaConversions.bufferAsJavaList(acls)*/)
      log.debug("保存Kafka消息偏移量详情: 话题:{}, 分区:{}, 偏移量:{}, ZK节点路径:{}", Seq[AnyRef](or.topic, or.partition.toString, offsetVal.toString, offsetPath): _*)
    })
  }


}

object Manager{
  def main(args: Array[String]): Unit = {
    //5 cdh1:9092,cdh2:9092,cdh3:9092 test2 zk cdh1:2181,cdh2:2181,cdh3:2181
    if (args.length < 5) {
      System.err.println("Usage: KafkaDirectStreamTest " +
        " " +
        " " +
        " " +
        " " +
        "")
      System.exit(1)
    }

    val batchDuration = args(0)
    val bootstrapServers = args(1).toString
    val topicsSet = args(2).toString.split(",").toSet
    val consumerGroupID = args(3)
    val zkQuorum = args(4)
    val sparkConf = new SparkConf().setAppName("Kafka-Offset-Management-Blog")
      .setMaster("local[4]")


    val sc = new SparkContext(sparkConf)
    val ssc = new StreamingContext(sc, Seconds(batchDuration.toLong))

    val topics = topicsSet.toArray

    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> bootstrapServers,
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> consumerGroupID,
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean) //禁用自动提交Offset,否则可能没正常消费完就提交了,造成数据错误
    )

    lazy val kafkaManager = new KafkaManager(zkQuorum , kafkaParams)
    val inputDStream: InputDStream[ConsumerRecord[String, String]] = kafkaManager.createDirectStream(ssc , topics)
    inputDStream.foreachRDD(rdd => {
      val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      offsetRanges.foreach(
        offset =>
          println(offset.topic, offset.partition, offset.fromOffset,offset.untilOffset)
      )
      kafkaManager.persistOffsets(rdd)
    })
    ssc.start()
    ssc.awaitTermination()




  }



}

 

转载于:https://www.cnblogs.com/niutao/p/10547831.html

你可能感兴趣的:(sparkStreaming消费kafka-1.0.1方式:direct方式(存储offset到zookeeper)-- 2)