参考上篇博文:https://www.cnblogs.com/niutao/p/10547718.html
同样的逻辑,不同的封装
package offsetInZookeeper /** * Created by angel */ import java.lang.Object import kafka.utils.{ZKGroupTopicDirs, ZkUtils} import org.apache.kafka.clients.consumer.{ConsumerRecord, KafkaConsumer} import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.rdd.RDD import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils} import org.slf4j.LoggerFactory import scala.collection.JavaConversions._ import scala.reflect.ClassTag import scala.util.Try /** * Kafka的连接和Offset管理工具类 * * @param zkHosts Zookeeper地址 * @param kafkaParams Kafka启动参数 */ class KafkaManager(zkHosts: String, kafkaParams: Map[String, Object]) extends Serializable { //Logback日志对象,使用slf4j框架 @transient private lazy val log = LoggerFactory.getLogger(getClass) //建立ZkUtils对象所需的参数 val (zkClient, zkConnection) = ZkUtils.createZkClientAndConnection(zkHosts, 10000, 10000) //ZkUtils对象,用于访问Zookeeper val zkUtils = new ZkUtils(zkClient, zkConnection, false) /** * 包装createDirectStream方法,支持Kafka Offset,用于创建Kafka Streaming流 * * @param ssc Spark Streaming Context * @param topics Kafka话题 * @tparam K Kafka消息Key类型 * @tparam V Kafka消息Value类型 * @return Kafka Streaming流 */ def createDirectStream[K: ClassTag, V: ClassTag](ssc: StreamingContext, topics: Seq[String]): InputDStream[ConsumerRecord[K, V]] = { val groupId = kafkaParams("group.id").toString val storedOffsets = readOffsets(topics, groupId) log.info("Kafka消息偏移量汇总(格式:(话题,分区号,偏移量)):{}", storedOffsets.map(off => (off._1.topic, off._1.partition(), off._2))) val kafkaStream = KafkaUtils.createDirectStream[K, V](ssc, PreferConsistent, ConsumerStrategies.Subscribe[K, V](topics, kafkaParams, storedOffsets)) kafkaStream } /** * 从Zookeeper读取Kafka消息队列的Offset * * @param topics Kafka话题 * @param groupId Kafka Group ID * @return 返回一个Map[TopicPartition, Long],记录每个话题每个Partition上的offset,如果还没消费,则offset为0 */ def readOffsets(topics: Seq[String], groupId: String): Map[TopicPartition, Long] = { val topicPartOffsetMap = collection.mutable.HashMap.empty[TopicPartition, Long] val partitionMap = zkUtils.getPartitionsForTopics(topics) // /consumers//offsets/ partitionMap.foreach(topicPartitions => { val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, topicPartitions._1) topicPartitions._2.foreach(partition => { val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + partition val tryGetKafkaOffset = Try { val offsetStatTuple = zkUtils.readData(offsetPath) if (offsetStatTuple != null) { log.info("查询Kafka消息偏移量详情: 话题:{}, 分区:{}, 偏移量:{}, ZK节点路径:{}", Seq[AnyRef](topicPartitions._1, partition.toString, offsetStatTuple._1, offsetPath): _*) topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)), offsetStatTuple._1.toLong) } } if(tryGetKafkaOffset.isFailure){ //http://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html val consumer = new KafkaConsumer[String, Object](kafkaParams) val partitionList = List(new TopicPartition(topicPartitions._1, partition)) consumer.assign(partitionList) val minAvailableOffset = consumer.beginningOffsets(partitionList).values.head consumer.close() log.warn("查询Kafka消息偏移量详情: 没有上一次的ZK节点:{}, 话题:{}, 分区:{}, ZK节点路径:{}, 使用最小可用偏移量:{}", Seq[AnyRef](tryGetKafkaOffset.failed.get.getMessage, topicPartitions._1, partition.toString, offsetPath, minAvailableOffset): _*) topicPartOffsetMap.put(new TopicPartition(topicPartitions._1, Integer.valueOf(partition)), minAvailableOffset) } }) }) topicPartOffsetMap.toMap } /** * 保存Kafka消息队列消费的Offset * * @param rdd SparkStreaming的Kafka RDD,RDD[ConsumerRecord[K, V] * @param storeEndOffset true=保存结束offset, false=保存起始offset */ def persistOffsets[K, V](rdd: RDD[ConsumerRecord[K, V]], storeEndOffset: Boolean = true): Unit = { val groupId = kafkaParams("group.id").toString val offsetsList = rdd.asInstanceOf[HasOffsetRanges].offsetRanges offsetsList.foreach(or => { val zkGroupTopicDirs = new ZKGroupTopicDirs(groupId, or.topic) val offsetPath = zkGroupTopicDirs.consumerOffsetDir + "/" + or.partition val offsetVal = if (storeEndOffset) or.untilOffset else or.fromOffset zkUtils.updatePersistentPath(zkGroupTopicDirs.consumerOffsetDir + "/" + or.partition, offsetVal + "" /*, JavaConversions.bufferAsJavaList(acls)*/) log.debug("保存Kafka消息偏移量详情: 话题:{}, 分区:{}, 偏移量:{}, ZK节点路径:{}", Seq[AnyRef](or.topic, or.partition.toString, offsetVal.toString, offsetPath): _*) }) } } object Manager{ def main(args: Array[String]): Unit = { //5 cdh1:9092,cdh2:9092,cdh3:9092 test2 zk cdh1:2181,cdh2:2181,cdh3:2181 if (args.length < 5) { System.err.println("Usage: KafkaDirectStreamTest " + "/ " + " " + " " + " " + " ") System.exit(1) } val batchDuration = args(0) val bootstrapServers = args(1).toString val topicsSet = args(2).toString.split(",").toSet val consumerGroupID = args(3) val zkQuorum = args(4) val sparkConf = new SparkConf().setAppName("Kafka-Offset-Management-Blog") .setMaster("local[4]") val sc = new SparkContext(sparkConf) val ssc = new StreamingContext(sc, Seconds(batchDuration.toLong)) val topics = topicsSet.toArray val kafkaParams = Map[String, Object]( "bootstrap.servers" -> bootstrapServers, "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> consumerGroupID, "auto.offset.reset" -> "latest", "enable.auto.commit" -> (false: java.lang.Boolean) //禁用自动提交Offset,否则可能没正常消费完就提交了,造成数据错误 ) lazy val kafkaManager = new KafkaManager(zkQuorum , kafkaParams) val inputDStream: InputDStream[ConsumerRecord[String, String]] = kafkaManager.createDirectStream(ssc , topics) inputDStream.foreachRDD(rdd => { val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges offsetRanges.foreach( offset => println(offset.topic, offset.partition, offset.fromOffset,offset.untilOffset) ) kafkaManager.persistOffsets(rdd) }) ssc.start() ssc.awaitTermination() } }