SparkStreaming之基本数据源输入

本文大部分内容来自http://blog.csdn.net/legotime/article/details/51836036,其中部分内容做了添加和修改。


环境:
Redhat5.5 64位(我这里的Linux版本有点低,你可以再高一些)
spark-1.6.3-bin-hadoop2.6
scala-2.10.6
jdk-8u91-linux-x64
开发工具:scala-SDK-4.6.1(下载地址:http://scala-ide.org/)


输入DStreams表示从数据源获取的原始数据流。Spark Streaming拥有两类数据源
(1)基本源(Basic sources):这些源在StreamingContext API中直接可用。例如文件系统、套接字连接、
Akka的actor等。
(2)高级源(Advanced sources):这些源包括Kafka,Flume,Kinesis,Twitter等等。
1、基本数据源输入源码
SparkStream 对于外部的数据输入源,一共有下面几种:
(1)用户自定义的数据源:receiverStream
(2)根据TCP协议的数据源: socketTextStream、socketStream
(3)网络数据源:rawSocketStream
(4)hadoop文件系统输入源:fileStream、textFileStream、binaryRecordsStream
(5)其他输入源(队列形式的RDD):queueStream

源代码路径:spark-1.6.3\streaming\src\main\scala\org\apache\spark\streaming

  /**
   * Create an input stream with any arbitrary user implemented receiver.
   * Find more details at: http://spark.apache.org/docs/latest/streaming-custom-receivers.html
   * @param receiver Custom implementation of Receiver
   */
  def receiverStream[T: ClassTag](receiver: Receiver[T]): ReceiverInputDStream[T] = {
    withNamedScope("receiver stream") {
      new PluggableInputDStream[T](this, receiver)
    }
  }

  /**
   * Create an input stream with any arbitrary user implemented actor receiver.
   * Find more details at: http://spark.apache.org/docs/latest/streaming-custom-receivers.html
   * @param props Props object defining creation of the actor
   * @param name Name of the actor
   * @param storageLevel RDD storage level (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   *
   * @note An important point to note:
   *       Since Actor may exist outside the spark framework, It is thus user's responsibility
   *       to ensure the type safety, i.e parametrized type of data received and actorStream
   *       should be same.
   */
  def actorStream[T: ClassTag](
      props: Props,
      name: String,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2,
      supervisorStrategy: SupervisorStrategy = ActorSupervisorStrategy.defaultStrategy
    ): ReceiverInputDStream[T] = withNamedScope("actor stream") {
    receiverStream(new ActorReceiver[T](props, name, storageLevel, supervisorStrategy))
  }

  /**
   * Create a input stream from TCP source hostname:port. Data is received using
   * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\n` delimited
   * lines.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   */
  def socketTextStream(
      hostname: String,
      port: Int,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
    socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
  }

  /**
   * Create a input stream from TCP source hostname:port. Data is received using
   * a TCP socket and the receive bytes it interepreted as object using the given
   * converter.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param converter     Function to convert the byte stream to objects
   * @param storageLevel  Storage level to use for storing the received objects
   * @tparam T            Type of the objects received (after converting bytes to objects)
   */
  def socketStream[T: ClassTag](
      hostname: String,
      port: Int,
      converter: (InputStream) => Iterator[T],
      storageLevel: StorageLevel
    ): ReceiverInputDStream[T] = {
    new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
  }

  /**
   * Create a input stream from network source hostname:port, where data is received
   * as serialized blocks (serialized using the Spark's serializer) that can be directly
   * pushed into the block manager without deserializing them. This is the most efficient
   * way to receive data.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
   * @tparam T            Type of the objects in the received blocks
   */
  def rawSocketStream[T: ClassTag](
      hostname: String,
      port: Int,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[T] = withNamedScope("raw socket stream") {
    new RawInputDStream[T](this, hostname, port, storageLevel)
  }

  /**
   * Create a input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory)
  }

  /**
   * Create a input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system.
   * @param directory HDFS directory to monitor for new file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly)
  }

  /**
   * Create a input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @param conf Hadoop configuration
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[
    K: ClassTag,
    V: ClassTag,
    F <: NewInputFormat[K, V]: ClassTag
  ] (directory: String,
     filter: Path => Boolean,
     newFilesOnly: Boolean,
     conf: Configuration): InputDStream[(K, V)] = {
    new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly, Option(conf))
  }

  /**
   * Create a input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as text files (using key as LongWritable, value
   * as Text and input format as TextInputFormat). Files must be written to the
   * monitored directory by "moving" them from another location within the same
   * file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   */
  def textFileStream(directory: String): DStream[String] = withNamedScope("text file stream") {
    fileStream[LongWritable, Text, TextInputFormat](directory).map(_._2.toString)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as flat binary files, assuming a fixed length per record,
   * generating one byte array per record. Files must be written to the monitored directory
   * by "moving" them from another location within the same file system. File names
   * starting with . are ignored.
   *
   * '''Note:''' We ensure that the byte array for each record in the
   * resulting RDDs of the DStream has the provided record length.
   *
   * @param directory HDFS directory to monitor for new file
   * @param recordLength length of each record in bytes
   */
  def binaryRecordsStream(
      directory: String,
      recordLength: Int): DStream[Array[Byte]] = withNamedScope("binary records stream") {
    val conf = sc_.hadoopConfiguration
    conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength)
    val br = fileStream[LongWritable, BytesWritable, FixedLengthBinaryInputFormat](
      directory, FileInputDStream.defaultFilter: Path => Boolean, newFilesOnly = true, conf)
    val data = br.map { case (k, v) =>
      val bytes = v.getBytes
      require(bytes.length == recordLength, "Byte array does not have correct length. " +
        s"${bytes.length} did not equal recordLength: $recordLength")
      bytes
    }
    data
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * NOTE: Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   *
   * @param queue      Queue of RDDs
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @tparam T         Type of objects in the RDD
   */
  def queueStream[T: ClassTag](
      queue: Queue[RDD[T]],
      oneAtATime: Boolean = true
    ): InputDStream[T] = {
    queueStream(queue, oneAtATime, sc.makeRDD(Seq[T](), 1))
  }
  
  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * NOTE: Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   *
   * @param queue      Queue of RDDs
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @param defaultRDD Default RDD is returned by the DStream when the queue is empty.
   *                   Set as null if no RDD should be returned when empty
   * @tparam T         Type of objects in the RDD
   */
  def queueStream[T: ClassTag](
      queue: Queue[RDD[T]],
      oneAtATime: Boolean,
      defaultRDD: RDD[T]
    ): InputDStream[T] = {
    new QueueInputDStream(this, queue, oneAtATime, defaultRDD)
  }

2、实验
2.1  用户自定义的数据输入源实验
第一步:创建外部scoket端,数据流模式器,程序如下:
[hadoop@h71 q1]$ vi streamingSimulation.scala

import java.io.{PrintWriter}  
import java.net.ServerSocket  
import scala.io.Source

object streamingSimulation {  
  def index(n: Int) = scala.util.Random.nextInt(n)  

  def main(args: Array[String]) {  
    // 调用该模拟器需要三个参数,分为为文件路径、端口号和间隔时间(单位:毫秒)  
    if (args.length != 3) {  
      System.err.println("Usage:   ")  
      System.exit(1)  
    }  
  
    // 获取指定文件总的行数  
    val filename = args(0)  
    val lines = Source.fromFile(filename).getLines.toList  
    val filerow = lines.length  
  
    // 指定监听某端口,当外部程序请求时建立连接  
    val listener = new ServerSocket(args(1).toInt)  
  
    while (true) {  
      val socket = listener.accept()  
      new Thread() {  
        override def run = {  
          println("Got client connected from: " + socket.getInetAddress)  
          val out = new PrintWriter(socket.getOutputStream(), true)  
          while (true) {  
            Thread.sleep(args(2).toLong)  
            // 当该端口接受请求时,随机获取某行数据发送给对方  
            val content = lines(index(filerow))  
            println("-------------------------------------------")  
            println(s"Time: ${System.currentTimeMillis()}")  
            println("-------------------------------------------")  
            println(content)  
            out.write(content + '\n')  
            out.flush()  
          }  
          socket.close()  
        }  
      }.start()  
    }  
  }  
}

第二步:运行上述代码
[hadoop@h71 q1]$ scalac streamingSimulation.scala
[hadoop@h71 q1]$ scala streamingSimulation /home/hadoop/q1/Information 9999 1000
其中9999是端口号,1000(ms)是发送数据间隔时间,/home/hadoop/q1/Information是数据文件information的位置,information内部数据如下:
hello world
hello hadoop
hello hive


第三步:在eclipse中编写自己的receiver函数和SparkStreaming程序,程序如下:

import java.io.{BufferedReader, InputStreamReader}  
import java.net.Socket  
import java.nio.charset.StandardCharsets  

import org.apache.spark.{Logging, SparkConf}  
import org.apache.spark.storage.StorageLevel  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.apache.spark.streaming.receiver.Receiver  
  
/** 
  * Custom Receiver that receives data over a socket. Received bytes are interpreted as 
  * text and \n delimited lines are considered as records. They are then counted and printed. 
  * 
  * To run this on your local machine, you need to first run a Netcat server 
  *    `$ nc -lk 9999` 
  * and then run the example 
  *    `$ bin/run-example org.apache.spark.examples.streaming.CustomReceiver localhost 9999` 
  */  
object CustomReceiver {  
  def main(args: Array[String]) {  
    if (args.length < 2) {  
      System.err.println("Usage: CustomReceiver  ")  
      System.exit(1)  
    }  
  
    // Create the context with a 1 second batch size  
    val sparkConf = new SparkConf().setAppName("CustomReceiver").setMaster("local[4]")  
    val ssc = new StreamingContext(sparkConf, Seconds(1))  
  
    // Create an input stream with the custom receiver on target ip:port and count the  
    // words in input stream of \n delimited text (eg. generated by 'nc')  
    val lines = ssc.receiverStream(new CustomReceiver(args(0), args(1).toInt))  
    val words = lines.flatMap(_.split(" "))  
    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)  
    wordCounts.print()  
    ssc.start()  
    ssc.awaitTermination()  
  }  
}  
  
class CustomReceiver(host: String, port: Int)  
  extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2) with Logging {  
  
  def onStart() {  
    // Start the thread that receives data over a connection  
    new Thread("Socket Receiver") {  
      override def run() { receive() }  
    }.start()  
  }  
  
  def onStop() {  
    // There is nothing much to do as the thread calling receive()  
    // is designed to stop by itself isStopped() returns false  
  }  
  
  /** Create a socket connection and receive data until receiver is stopped */  
  private def receive() {  
    var socket: Socket = null  
    var userInput: String = null  
    try {  
      logInfo("Connecting to " + host + ":" + port)  
      socket = new Socket(host, port)  
      logInfo("Connected to " + host + ":" + port)  
      val reader = new BufferedReader(  
        new InputStreamReader(socket.getInputStream(), StandardCharsets.UTF_8))  
      userInput = reader.readLine()  
      while(!isStopped && userInput != null) {  
        store(userInput)  
        userInput = reader.readLine()  
      }  
      reader.close()  
      socket.close()  
      logInfo("Stopped receiving")  
      restart("Trying to connect again")  
    } catch {  
      case e: java.net.ConnectException =>  
        restart("Error connecting to " + host + ":" + port, e)  
      case t: Throwable =>  
        restart("Error receiving data", t)  
    }  
  }  
}

第四步:用scala-SDK-4.6.1将代码打成jar包并上传到/home/hadoop/spark-1.6.3-bin-hadoop2.6目录下并运行程序
[hadoop@h71 spark-1.6.3-bin-hadoop2.6]$ bin/spark-submit --class CustomReceiver haha.jar h71 9999
[hadoop@h71 q1]$ scala streamingSimulation Information 9999 1000

Got client connected from: /192.168.8.71
-------------------------------------------         -------------------------------------------
Time: 1489751287491                                 Time: 1489751428000 ms
-------------------------------------------         -------------------------------------------    
hello world                                  ---->  (hello,1)
                                                    (world,1)           
-------------------------------------------         -------------------------------------------    
Time: 1489751288494                                 Time: 1489751429000 ms    
-------------------------------------------         -------------------------------------------    
hello hadoop                                 ---->  (hadoop,1)
                                                    (hello,1)
-------------------------------------------         -------------------------------------------    
Time: 1489751289496                                 Time: 1489751430000 ms    
-------------------------------------------         -------------------------------------------    
hello world                                  ---->  (hello,1)
                                                    (world,1)

2.2  根据TCP协议的数据源实验
(1)socketTextStream函数
第一步:数据模拟,参考前面
第二步:编写SparkStreaming程序,程序如下:

import org.apache.log4j.{Level, Logger}  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.apache.spark.{SparkConf, SparkContext}  

object TCPOnStreaming {  
  def main(args: Array[String]) {  

    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)  
    Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF)  

    val conf = new SparkConf().setAppName("TCPOnStreaming example").setMaster("local[4]")  
    val sc = new SparkContext(conf)  
    val ssc = new StreamingContext(sc,Seconds(2))  

    //set the Checkpoint directory  
    ssc.checkpoint("/Res")  

    //get the socket Streaming data  
    val socketStreaming = ssc.socketTextStream("h71",9999)  

    val data = socketStreaming.map(x =>(x,1))  
    data.print()  

    ssc.start()  
    ssc.awaitTermination()  
  }  
}

第三步,打成jar包并运行程序,结果如下:

[hadoop@h71 spark-1.6.3-bin-hadoop2.6]$ bin/spark-submit --class TCPOnStreaming haha.jar
-------------------------------------------
Time: 1489751944000 ms
-------------------------------------------
(hello hadoop,1)
(hello hive,1)
17/03/17 19:59:04 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489751942000: 
-------------------------------------------
Time: 1489751946000 ms
-------------------------------------------
(hello hadoop,1)
(hello hive,1)
17/03/17 19:59:06 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489751944000: 
-------------------------------------------
Time: 1489751948000 ms
-------------------------------------------
(hello world,1)
(hello world,1)
17/03/17 19:59:08 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489751946000: 
-------------------------------------------
Time: 1489751950000 ms
-------------------------------------------
(hello world,1)
(hello world,1)
数据端的数据:
[hadoop@h71 q1]$ scala streamingSimulation Information 9999 1000

Got client connected from: /192.168.8.71
-------------------------------------------
Time: 1489752463871
-------------------------------------------
hello hadoop
-------------------------------------------
Time: 1489752464873
-------------------------------------------
hello hive
-------------------------------------------
Time: 1489752465875
-------------------------------------------
hello hadoop
-------------------------------------------
Time: 1489752466880
-------------------------------------------
hello hive
-------------------------------------------
Time: 1489752467883
-------------------------------------------
hello world
-------------------------------------------
Time: 1489752468884
-------------------------------------------
hello world
-------------------------------------------
Time: 1489752469887
-------------------------------------------
hello world
-------------------------------------------
Time: 1489752470890
-------------------------------------------
hello world

(2)socketStream函数

第一步:数据模拟,参考前面
第二步:编写SparkStreaming程序,程序如下:

import java.io.{InputStream}

import org.apache.log4j.{Level, Logger}  
import org.apache.spark.storage.StorageLevel  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.apache.spark.{SparkConf, SparkContext}  

object socketStreamData {  
  def main(args: Array[String]) {  

    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)  
    Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF)  
  
    val conf = new SparkConf().setAppName("socketStreamData example").setMaster("local[4]")  
    val sc = new SparkContext(conf)  
    val ssc = new StreamingContext(sc,Seconds(2))  
  
    //set the Checkpoint directory  
    ssc.checkpoint("/Res")  
  
    val SocketData = ssc.socketStream[String]("h71",9999,myDeserialize,StorageLevel.MEMORY_AND_DISK_SER )  
  
    //val data = SocketData.map(x =>(x,1))  
    //data.print()  
    SocketData.print()  
  
    ssc.start()  
    ssc.awaitTermination()  
  }  
  
  def myDeserialize(data:InputStream): Iterator[String]={  
    data.read().toString.map( x => x.hashCode().toString).iterator  
  }  
}

第三步,运行程序,结果如下:

[hadoop@h71 spark-1.6.3-bin-hadoop2.6]$ bin/spark-submit --class socketStreamData haha.jar
-------------------------------------------
Time: 1489752826000 ms
-------------------------------------------
49
48
52
17/03/17 20:13:46 INFO WriteAheadLogManager  for Thread: Attempting to clear 1 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489752824000: hdfs://h71:9000/Res/receivedBlockMetadata/log-1489752464020-1489752524020
17/03/17 20:13:46 INFO WriteAheadLogManager  for Thread: Cleared log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489752824000
-------------------------------------------
Time: 1489752828000 ms
-------------------------------------------
17/03/17 20:13:48 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489752826000: 
17/03/17 20:13:48 ERROR scheduler.ReceiverTracker: Deregistered receiver for stream 0: Restarting receiver with delay 2000ms: Socket data stream had no more data
-------------------------------------------
Time: 1489752830000 ms
-------------------------------------------
49
48
52
17/03/17 20:13:50 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://h71:9000/Res/receivedBlockMetadata older than 1489752828000: 
17/03/17 20:13:51 ERROR scheduler.ReceiverTracker: Deregistered receiver for stream 0: Restarting receiver with delay 2000ms: Socket data stream had no more data
-------------------------------------------
Time: 1489752832000 ms
-------------------------------------------
49
48
52
(我这里没有搞明白这些数字是咋么来的,并且为什么三次都是49、48、52,原文中我见有时候是三个数字有时候是两个啊)


数据端的数据:
-------------------------------------------
Time: 1489752834427
-------------------------------------------
hello hive
-------------------------------------------
Time: 1489752834476
-------------------------------------------
hello world
-------------------------------------------
Time: 1489752834478
-------------------------------------------
hello hive

2.3  网络数据源:rawSocketStream

import org.apache.spark.SparkConf  
import org.apache.spark.storage.StorageLevel  
import org.apache.spark.streaming._  
import org.apache.spark.util.IntParam  
  
/** 
 * Receives text from multiple rawNetworkStreams and counts how many '\n' delimited 
 * lines have the word 'the' in them. This is useful for benchmarking purposes. This 
 * will only work with spark.streaming.util.RawTextSender running on all worker nodes 
 * and with Spark using Kryo serialization (set Java property "spark.serializer" to 
 * "org.apache.spark.serializer.KryoSerializer"). 
 * Usage: RawNetworkGrep     
 *    is the number rawNetworkStreams, which should be same as number 
 *               of work nodes in the cluster 
 *    is "localhost". 
 *    is the port on which RawTextSender is running in the worker nodes. 
 *    is the Spark Streaming batch duration in milliseconds. 
 */  
object RawNetworkGrep {  
  def main(args: Array[String]) {  
    if (args.length != 4) {  
      System.err.println("Usage: RawNetworkGrep    ")  
      System.exit(1)  
    }  
  
    StreamingExamples.setStreamingLogLevels()  
  
    val Array(IntParam(numStreams), host, IntParam(port), IntParam(batchMillis)) = args  
    val sparkConf = new SparkConf().setAppName("RawNetworkGrep")  
    // Create the context  
    val ssc = new StreamingContext(sparkConf, Duration(batchMillis))  
  
    val rawStreams = (1 to numStreams).map(_ =>  
      ssc.rawSocketStream[String](host, port, StorageLevel.MEMORY_ONLY_SER_2)).toArray  
    val union = ssc.union(rawStreams)  
    union.filter(_.contains("the")).count().foreachRDD(r =>  
      println("Grep count: " + r.collect().mkString))  
    ssc.start()  
    ssc.awaitTermination()  
  }
}
注:这个我把代码导入eclipse中报错,原文中也没有详细说明,这个功能我没有成功试验


2.4  hadoop文件系统输入源:fileStream、textFileStream、binaryRecordsStream
(1)fileStream函数
(2)textFileStream函数
第一步、写好SparkStreaming程序,并启动

import org.apache.log4j.{Level, Logger}  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.apache.spark.{SparkConf, SparkContext}  

object fileStreamData {  
  def main(args: Array[String]) {  
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)  
    Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF)  

    val conf = new SparkConf().setAppName("fileStreamData").setMaster("local[2]")  
    val sc =new SparkContext(conf)  
    val ssc = new StreamingContext(sc, Seconds(2))  

//    如果想读取Linux本地目录的话,要这样写:val lines = ssc.textFileStream("file:///in/")
    val lines = ssc.textFileStream("hdfs://h71:9000/in/")
    val wordCount = lines.flatMap(_.split(" ")).map(x => (x,1)).reduceByKey(_+_)  
    wordCount.print()  

    ssc.start()  
    ssc.awaitTermination()  
  }  
}
注:这不是数据来源是hadoop吗,不知为何原博主在代码中写的是Linux本地文件目录(val lines = ssc.textFileStream("/root/application/dataDir/")),并且按原博主的论述也无法成功啊。然后就是代码中注释掉的
//fileStream 用法  
//val lines = ssc.fileStream[LongWritable, Text, TextInputFormat]("hdfs:///examples/").map{ case (x, y) => (x.toString, y.toString) }  
//val lines = ssc.fileStream[LongWritable, Text, TextInputFormat]("/root/application/dataDir/").map{ case (x, y) => (x.toString, y.toString) }  
//lines.print()
我没看懂也没有试验成功,不知原博主是什么用意


第二步:运行程序,结果如下:
[hadoop@h71 spark-1.6.3-bin-hadoop2.6]$ bin/spark-submit --class fileStreamData haha.jar
并将数据上传到hadoop相应目录:
[hadoop@h71 q1]$ hadoop fs -put Information /in


控制台打印信息:

-------------------------------------------
Time: 1489753630000 ms
-------------------------------------------

17/03/17 20:27:12 INFO input.FileInputFormat: Total input paths to process : 1
-------------------------------------------
Time: 1489753632000 ms
-------------------------------------------
(hive,1)
(hello,3)
(world,1)
(hadoop,1)

-------------------------------------------
Time: 1489753634000 ms
-------------------------------------------

2.5  其他输入源(队列形式的RDD):queueStream

import scala.collection.mutable.Queue  
  
import org.apache.spark.SparkConf  
import org.apache.spark.rdd.RDD  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
  
object QueueStream {  
  def main(args: Array[String]) {  
  
    val sparkConf = new SparkConf().setAppName("QueueStream").setMaster("local[4]")  
    // Create the context  
    val ssc = new StreamingContext(sparkConf, Seconds(1))  
  
    // Create the queue through which RDDs can be pushed to  
    // a QueueInputDStream  
    val rddQueue = new Queue[RDD[Int]]()  
  
    // Create the QueueInputDStream and use it do some processing  
    val inputStream = ssc.queueStream(rddQueue)  
    val mappedStream = inputStream.map(x => (x % 10, 1))  
    val reducedStream = mappedStream.reduceByKey(_ + _)  
    reducedStream.print()  
    ssc.start()  
  
    // Create and push some RDDs into rddQueue  
    for (i <- 1 to 30) {  
      rddQueue.synchronized {  
        rddQueue += ssc.sparkContext.makeRDD(1 to 1000, 10)  
      }  
      Thread.sleep(1000)  
    }  
    ssc.stop()  
  }  
}

运行程序:
[hadoop@h71 spark-1.6.3-bin-hadoop2.6]$ bin/spark-submit --class QueueStream haha.jar


结果:
-------------------------------------------
Time: 1489753774000 ms
-------------------------------------------
(4,100)
(0,100)
(8,100)
(1,100)
(9,100)
(5,100)
(6,100)
(2,100)
(3,100)
(7,100)

你可能感兴趣的:(spark,Scala)