环境,以及单独的pom.xml文件
环境:java 1.8 ,kafka_2.11-0.10.2.1
pom.xml文件如下
4.0.0
kafka_demo
kafka_demo
1.0-SNAPSHOT
0.10.2.1
org.apache.kafka
kafka_2.11
${kafka.version}
1、生产者代码
package p_c_demo1;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import utils.KafkaProperties;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
/**
*
*/
public class Producer_demo1 extends Thread{
public static void main(String[] args) {
//boolean isAsync = args.length == 0 || !args[0].trim().equalsIgnoreCase("sync");
boolean isAsync = true;
Producer_demo1 producerThread = new Producer_demo1(KafkaProperties.INTOPIC, isAsync);
producerThread.start();
}
private final KafkaProducer producer;
private final String topic;
private final Boolean isAsync;
public Producer_demo1(String topic, Boolean isAsync) {
Properties props = new Properties();
props.put("bootstrap.servers",
KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT0
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT1
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT2);
props.put("client.id", "Producer_demo1");
//开始的时候下面5个参数未设置,导致消费时取不到数据,需要注意
/* acks=0时,producer不会等待确认,直接添加到socket等待发送;
acks=1时,等待leader写到local log就行;
acks=all或acks=-1时,等待isr中所有副本确认
*/
props.put("acks", "all");
//發送失敗重試
props.put("retries", 0);
//批次发送,不会尝试大于此值的容量
props.put("batch.size", 16384);
//默认设置为0,
// 具体参数参考:http://kafka.apache.org/0102/documentation.html#producerconfigs
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer(props);
//方法传进来的参数
this.topic = topic;
this.isAsync = isAsync;
}
//持续保持数据发送
public void run() {
System.out.println("ProducerThread--run");
int messageNo = 1;
//这里面应该是自己的数据逻辑处理
while (true) {
String messageStr = "Message_" + messageNo;
long startTime = System.currentTimeMillis();
/*
查看源码可以知道第二个send其实就是调用的第一个send 但是callback为null
send
public Future send(ProducerRecord record) {
return this.send(record, (Callback)null);
}
*/
if (isAsync) { // Send asynchronously
producer.send(
new ProducerRecord(topic, messageNo, messageStr),
new DemoCallBack(startTime, messageNo, messageStr));
} else { // Send synchronously
try {
producer.send(new ProducerRecord(topic,messageNo,messageStr)).get();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("Sent message: (" + messageNo + ", " + messageStr + ")");
}
//messageNo;
System.out.println("Sent message: (" + messageNo++ + ", " + messageStr + ")");
//休息0.5秒
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
if(messageNo==5000){
//break;
}
}
}
}
class DemoCallBack implements Callback {
private final long startTime;
private final int key;
private final String message;
public DemoCallBack(long startTime, int key, String message) {
this.startTime = startTime;
this.key = key;
this.message = message;
}
/**
* A callback method the user can implement to provide asynchronous handling of request completion. This method will
* be called when the record sent to the server has been acknowledged. Exactly one of the arguments will be
* non-null.
*
* @param metadata The metadata for the record that was sent (i.e. the partition and offset). Null if an error
* occurred.
* @param exception The exception thrown during processing of this record. Null if no error occurred.
*/
public void onCompletion(RecordMetadata metadata, Exception exception) {
long elapsedTime = System.currentTimeMillis() - startTime;
if (metadata != null) {
System.out.println(
"message(" + key + ", " + message + ") sent to partition(" + metadata.partition() +
"), " +
"offset(" + metadata.offset() + ") in " + elapsedTime + " ms");
} else {
exception.printStackTrace();
}
}
}
2、消费者代码
package consumerDemo;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import utils.KafkaProperties;
import java.util.Arrays;
import java.util.Properties;
public class Conumer_demo1 extends Thread{
public static void main(String[] args) {
p_c_demo1.Conumer_demo1 consumerThread = new p_c_demo1.Conumer_demo1(KafkaProperties.INTOPIC);
consumerThread.start();
}
private final KafkaConsumer consumer;
private final String topic;
private static final Logger LOG = LoggerFactory.getLogger(Conumer_demo1.class);
public Conumer_demo1(String topic) {
Properties props = new Properties();
//bootstrap.servers 必要
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT0
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT1
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT2);
//group id
props.put(ConsumerConfig.GROUP_ID_CONFIG, "producer-consumer-demo1");
//是否后台自动提交offset 到kafka
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
//消费者偏移自动提交到Kafka的频率(以毫秒为单位enable.auto.commit)设置为true
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
//故障检测,心跳检测机制 的间隔时间,,在该值范围内,没有接收到心跳,则会删除该消费者
//并启动再平衡(rebanlance),值必须在group.min.session.timeout 和 group.max.session.timeout.ms之间
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "30000");
//key - value 的序列化类
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer(props);
this.topic = topic;
}
public void run() {
System.out.println("ConsumerThread--run");
consumer.subscribe(Arrays.asList(KafkaProperties.INTOPIC));
// consumer.subscribe(Collections.singletonList(this.topic));
while (true) {
//consumer.poll()
ConsumerRecords records = consumer.poll(200);
for (ConsumerRecord record : records) {
System.out.println("Received message: (" + record.key() + ", " + record.value()
+ ") offset " + record.offset()
+ " partition " + record.partition() + ")");
}
}
}
}
3、还有一个工具类,放我们的各项参数设置
package utils;
public class KafkaProperties {
public static final String INTOPIC = "producer_consumer_demo1";
//public static final String OUTTOPIC = "topic2";
public static final String KAFKA_SERVER_URL = "make.spark.com";
public static final int KAFKA_SERVER_PORT0 = 9092;
public static final int KAFKA_SERVER_PORT1 = 9093;
public static final int KAFKA_SERVER_PORT2 = 9094;
public static final int KAFKA_PRODUCER_BUFFER_SIZE = 65536;
public static final int CONNECTION_TIMEOUT = 100000;
public static final String CLIENT_ID = "SimpleConsumerDemoClient";
private KafkaProperties() {}
}
这个时候启动我们,生产者,就会开始生产数据,同时运行我么你的消费者 就可以看到我们的消费信息,具体在哪个分区,消费到那个偏移量,如果同时多开,两个消费者,可以看到rebalane的机制,会重新再平衡每个消费者,消费的分区,这里的前提是,要修改你的topic,改成多个分区才可以,生产者默认创建的topic是只有一个分区的
以上,就是一个生产者,消费者的一个简单示例,做个简单记录,
参考文章地址: 请点这里!!感谢博主