HBase建立二级索引的一些解决方式

HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索。

假设我们相对hbase里面列族的列列进行一些组合查询。就须要採用HBase的二级索引方案来进行多条件的查询。
常见的二级索引方案有下面几种:
1.MapReduce方案
2.ITHBASE方案
3.IHBASE方案
4.Coprocessor方案
5.Solr+hbase方案

MapReduce方案

IndexBuilder:利用MR的方式构建Index
长处:并发批量构建Index
缺点:不能实时构建Index

举例:
原表:

row  1      f1:name  zhangsan
row  2      f1:name  lisi
row  3      f1:name  wangwu

索引表:

row     zhangsan    f1:id   1
row     lisi        f1:id   2
row     wangwu      f1:id   3

Demo:

package IndexDouble;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import org.apache.commons.collections.map.HashedMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HConnection;
import org.apache.hadoop.hbase.client.HConnectionManager;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.MultiTableOutputFormat;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;


public class IndexBuilder {
    private String rootDir;
    private String zkServer;
    private String port;
    private Configuration conf; 
    private HConnection hConn = null;

    private IndexBuilder(String rootDir,String zkServer,String port) throws IOException{
        this.rootDir = rootDir;
        this.zkServer = zkServer;
        this.port = port;

        conf = HBaseConfiguration.create();
        conf.set("hbase.rootdir", rootDir);
        conf.set("hbase.zookeeper.quorum", zkServer);
        conf.set("hbase.zookeeper.property.clientPort", port);

        hConn = HConnectionManager.createConnection(conf);  
    }

    static class MyMapper extends TableMapper{

        //记录了要进行索引的列
        private Map indexes = new 
                HashMap();

        private String familyName;

        @Override
        protected void map(ImmutableBytesWritable key, Result value,
                Context context) throws IOException, InterruptedException {
            //原始表列
            Set keys = indexes.keySet();

            //索引表的rowkey是原始表的列。索引表的列是原始表的rowkey

            for (byte[] k : keys){

                //获得新建索引表的表名
                ImmutableBytesWritable indexTableName = indexes.get(k);

                //Result存放的是原始表的数据
                //查找到内容             依据列族 和 列 得到原始表的值
                byte[] val = value.getValue(Bytes.toBytes(familyName), k);

                if (val != null) {
                    //索引表
                    Put put = new Put(val);//索引表行键
                    //列族  列   原始表的行键
                    put.add(Bytes.toBytes("f1"),Bytes.toBytes("id"),key.get());
                    context.write(indexTableName, put);
                }
            }

        }

        //真正运行Map之前运行一些处理。

@Override protected void setup(Context context) throws IOException, InterruptedException { //通过上下文得到配置 Configuration conf = context.getConfiguration(); //获得表名 String tableName = conf.get("tableName"); //String family = conf.get("familyName"); //获得列族 familyName = conf.get("columnFamily"); //获得列 String[] qualifiers = conf.getStrings("qualifiers"); for (String qualifier : qualifiers) { //建立一个映射,为每个列创建一个表,表的名字tableName+"-"+qualifier //原始表的列 索引表新建表名 indexes.put(Bytes.toBytes(qualifier), new ImmutableBytesWritable(Bytes.toBytes(tableName+"-"+qualifier))); } } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { String rootDir = "hdfs://hadoop1:8020/hbase"; String zkServer = "hadoop1"; String port = "2181"; IndexBuilder conn = new IndexBuilder(rootDir,zkServer,port); String[] otherArgs = new GenericOptionsParser(conn.conf, args).getRemainingArgs(); //IndexBuilder: TableName,ColumnFamily,Qualifier if(otherArgs.length<3){ System.exit(-1); } //表名 String tableName = otherArgs[0]; //列族 String columnFamily = otherArgs[1]; conn.conf.set("tableName", tableName); conn.conf.set("columnFamily", columnFamily); //列 可能存在多个列 String[] qualifiers = new String[otherArgs.length-2]; for (int i = 0; i < qualifiers.length; i++) { qualifiers[i] = otherArgs[i+2]; } //设置列 conn.conf.setStrings("qualifiers", qualifiers); @SuppressWarnings("deprecation") Job job = new Job(conn.conf,tableName); job.setJarByClass(IndexBuilder.class); job.setMapperClass(MyMapper.class); job.setNumReduceTasks(0);//因为不须要运行reduce阶段 job.setInputFormatClass(TableInputFormat.class); job.setOutputFormatClass(MultiTableOutputFormat.class); Scan scan = new Scan(); TableMapReduceUtil.initTableMapperJob(tableName,scan, MyMapper.class, ImmutableBytesWritable.class, Put.class, job); job.waitForCompletion(true); } }

创建原始表
hbase(main):002:0> create 'studentinfo','f1'
0 row(s) in 0.6520 seconds

=> Hbase::Table - studentinfo


hbase(main):003:0> put 'studentinfo','1','f1:name','zhangsan'
0 row(s) in 0.1640 seconds

hbase(main):004:0> put 'studentinfo','2','f1:name','lisi'
0 row(s) in 0.0240 seconds

hbase(main):005:0> put 'studentinfo','3','f1:name','wangwu'
0 row(s) in 0.0290 seconds

hbase(main):006:0> scan 'studentinfo'
ROW                      COLUMN+CELL
 1                       column=f1:name, timestamp=1436262175823, value=zhangsan
 2                       column=f1:name, timestamp=1436262183922, value=lisi
 3                       column=f1:name, timestamp=1436262189250, value=wangwu
3 row(s) in 0.0530 seconds
创建索引表

hbase(main):007:0> create 'studentinfo-name','f1'
0 row(s) in 0.7740 seconds

=> Hbase::Table - studentinfo-name

运行结果

ITHBASE方案

长处:ITHBase(Indexed Transactional HBase)是HBase的一个事物型的带索引的扩展。
缺点:须要重构hbase,几年没有更新。
http://github.com/hbase-trx/hbase-transactional-tableindexed

IHBASE方案

**长处:**IHBase(Indexed HBase)是HBase的一个扩展。用干支持更快的扫描。
缺点:须要重构hbase。
原理:在Memstore满了以后刷磁盘时。IHBase会进行拦截请求,并为这个memstore的数据构建索引。索引还有一个CF的方式存储在表内。scan的时候,IHBase会结合索引列中的标记。来加速scan。
http://github.com/ykulbak/ihbase

Coprocessor方案

HIndex–来自华为的HBase二级索引
http://github.com/Huawei-Hadoop/hindex

The solution is 100% Java, compatible with Apache HBase 0.94.8, and is open sourced under ASL.

Following capabilities are supported currently.
1.multiple indexes on table,
2.multi column index,
3.index based on part of a column value,
4.equals and range condition scans using index, and
5.bulk loading data to indexed table (Indexing done with bulk load).

Solr+hbase方案

Solr是一个独立的企业级搜索应用server,它对并提供相似干Web-service的API接口。用户能够通过http请求,向搜索引擎server提交一定格式的XML文件,生成索引。也能够通过Http Get操作提出查找请求,并得到XML格式的返回结果。


Solr是一个高性能。採用Java5开发。基干Lucene的全文搜索server。同一时候对其进行了扩展。提供了比Lucene更为丰富的查询语言,同一时候实现了可配置、可扩展并对查询性能进行了优化,而且提供了一个完好的功能节理界面。是一款非常优秀的全文搜索引擎。

HBase无可置疑拥有其优势,但其本身仅仅对rowkey支持毫秒级的高速检索,对于多字段的组合查询却无能为力。
基于Solr的HBase多条件查询原理非常easy。将HBase表中涉及条件过滤的字段和rowkey在Solr中建立索引,通过Solr的多条件查询高速获得符合过滤条件的rowkey值,拿到这些rowkey之后在HBASE中通过指定rowkey进行查询。

你可能感兴趣的:(HBase建立二级索引的一些解决方式)