sparkstreaming同时消费多个topic的数据实现exactly-once的语义

最近很多人问我,sparkstreaming怎么消费多个topic的数据,自己维护offest,其实这个跟消费一个topic是一样的,但还是有很多问我,今天就简单的写一个demo,供大家参考,直接上代码吧,已经测试过了.我把offest存到redis里了,当然也可以保存在zk,kafka,mysql,hbase中都可以,看自己的选择.(用了3个topic,每个topic5个partition.)

package spark

import java.io.File
import kafka.{PropertiesScalaUtils, RedisKeysListUtils}
import kafka.streamingRedisHive.{dbIndex}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{Level, Logger}
import org.apache.spark.TaskContext
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010._
import redis.RedisPool

object moreTopic {
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.INFO)
    Logger.getLogger("org

你可能感兴趣的:(Spark,kafka)