The best time to plant a tree was 10 years ago,the second best time is now.
种一棵树最好的时间是十年前,其次是现在。
利用python爬取在前程无忧网搜索python关键字出现的最新的招聘数据,保存到本地Excel,进行数据查看和预处理,然后利用matplotlib进行数据分析和可视化。
目标url:https://www.51job.com/
在前程无忧网输入关键字python,搜索有关的岗位数据。翻页查看这些招聘岗位信息,可以发现url翻页的规律。
爬虫代码如下:
import asyncio
import aiohttp
import logging
import datetime
import re
import pandas as pd
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
start = datetime.datetime.now()
class Spider(object):
def __init__(self):
self.semaphore = asyncio.Semaphore(6)
self.headers = {
'Connection': 'Keep-Alive',
'Accept-Language': 'zh-CN,zh;q=0.9',
'Host': 'search.51job.com',
'Referer': 'https://search.51job.com/list/000000,000000,0000,00,9,99,Python,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99°reefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24'
}
async def scrape(self, url):
async with self.semaphore:
session = aiohttp.ClientSession(headers=self.headers)
response = await session.get(url)
await asyncio.sleep(1)
result = await response.text()
await session.close()
return result
async def scrape_index(self, page):
url = f'https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,{page}.html?lang=c&postchannel=0000&workyear=99&cotype=99°reefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare='
text = await self.scrape(url)
await self.parse(text)
await asyncio.sleep(1)
async def parse(self, text):
# 正则匹配提取数据
try:
job_name = re.findall('"job_name":"(.*?)",', text) # 职位
company_name = re.findall('"company_name":"(.*?)",', text) # 公司名称
salary = re.findall('"providesalary_text":"(.*?)",', text)
salary = [i.replace('\\', '') for i in salary] # 薪酬 去掉 \ 符号
city = re.findall('"workarea_text":"(.*?)",', text) # 城市
job_welfare = re.findall('"jobwelf":"(.*?)",', text) # 职位福利
attribute_text = re.findall('"attribute_text":(.*?),"companysize_text"', text)
attribute_text = ['|'.join(eval(i)) for i in attribute_text]
companysize = re.findall('"companysize_text":"(.*?)",', text) # 公司规模
category = re.findall('"companyind_text":"(.*?)",', text)
category = [i.replace('\\', '') for i in category] # 公司所属行业 去掉 \ 符号
datas = pd.DataFrame({'company_name': company_name, 'job_name': job_name, 'companysize': companysize, 'city': city, 'salary': salary, 'attribute_text': attribute_text, 'category': category, 'job_welfare': job_welfare})
datas.to_csv('job_info.csv', mode='a+', index=False, header=True)
logging.info({'company_name': company_name, 'job_name': job_name, 'company_size': companysize, 'city': city, 'salary': salary, 'attribute_text': attribute_text, 'category': category, 'job_welfare': job_welfare})
except Exception as e:
print(e)
def main(self):
# 爬取200页的数据
scrape_index_tasks = [asyncio.ensure_future(self.scrape_index(page)) for page in range(1, 201)]
loop = asyncio.get_event_loop()
tasks = asyncio.gather(*scrape_index_tasks)
loop.run_until_complete(tasks)
if __name__ == '__main__':
spider = Spider()
spider.main()
delta = (datetime.datetime.now() - start).total_seconds()
print("用时:{:.3f}s".format(delta))
运行效果如下:
爬取了200页的招聘数据,共10000条招聘信息,用时49.919s。
import pandas as pd
df = pd.read_csv('job_info.csv')
# 异步爬虫爬取数据时 datas.to_csv('job_info.csv', mode='a+', index=False, header=True) 删除多的列名
df1 = df[df['salary'] != 'salary']
# 查看前10行
df1.head(10)
# city那一列数据 处理为城市
# 按 - 分割 expand=True 0那一列重新赋值给df['city']
df1['city'] = df1['city'].str.split('-', expand=True)[0]
df1.head(10)
# 经验要求 学历要求 有的话是在attribute_text列里
df['attribute_text'].str.split('|', expand=True)
df1['experience'] = df1['attribute_text'].str.split('|', expand=True)[1]
df1['education'] = df1['attribute_text'].str.split('|', expand=True)[2]
df1
df1.to_csv('已清洗数据.csv', index=False)
查看索引、数据类型和内存信息
df2 = pd.read_csv('已清洗数据.csv')
df2.info()
代码如下:
import pandas as pd
import random
import matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv('已清洗数据.csv')
# 有些是异地招聘 过滤掉
data = df[df['city'] != '异地招聘']['city'].value_counts()
city = list(data.index)[:10] # 城市
nums = list(data.values)[:10] # 岗位数
print(city)
print(nums)
colors = ['#FF0000', '#0000CD', '#00BFFF', '#008000', '#FF1493', '#FFD700', '#FF4500', '#00FA9A', '#191970', '#9932CC']
random.shuffle(colors)
# 设置大小 像素
plt.figure(figsize=(9, 6), dpi=100)
# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 绘制柱形图 设置柱条的宽度和颜色
# color参数 每根柱条配置不同颜色
plt.bar(city, nums, width=0.5, color=colors)
# 添加描述信息
plt.title('招聘岗位数最多的城市Top10', fontsize=16)
plt.xlabel('城市', fontsize=12)
plt.ylabel('岗位数', fontsize=12)
# 展示图片
plt.show()
运行效果如下:
['上海', '深圳', '广州', '北京', '杭州', '成都', '武汉', '南京', '苏州', '长沙']
[2015, 1359, 999, 674, 550, 466, 457, 444, 320, 211]
上海、深圳、广州、北京提供了很多岗位,杭州、成都、武汉、南京等城市的招聘岗位数量也比较可观。
代码如下:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv('已清洗数据.csv')['salary']
part_interval = ["5K-10K", "10K-15K", "15K-20K", "20K-25K", "25K-30K", "30K-35K", "35-50K", "50K以上"]
level1, level2, level3, level4, level5, level6, level7, level8 = 0, 0, 0, 0, 0, 0, 0, 0
salary = None
for i in df.values:
if str(i) == 'nan':
pass
elif i[-3:] == '万/月':
i = i.replace('万/月', '-万/月')
x = i.split('-')
salary = (float(x[0]) + float(x[1])) * 10 / 2
elif i[-3:] == '千/月':
i = i.replace('千/月', '-千/月')
x = i.split('-')
salary = (float(x[0]) + float(x[1])) / 2
elif i[-3:] == '万/年':
i = i.replace('万/年', '-万/年')
x = i.split('-')
salary = (float(x[0]) + float(x[1])) / 2 * 10 / 12
else:
continue
if 5 < salary <= 10:
level1 += 1
elif 10 < salary <= 15:
level2 += 1
elif 15 < salary <= 20:
level3 += 1
elif 20 < salary <= 25:
level4 += 1
elif 25 < salary <= 30:
level5 += 1
elif 30 < salary <= 35:
level6 += 1
elif 35 < salary <= 50:
level7 += 1
else:
level8 += 1
nums = [level1, level2, level3, level4, level5, level6, level7, level8]
colors = ['#0000CD', '#FF0000', '#FFD700', '#7FFF00', '#FF1493', '#9400D3', '#FF8C00', '#87CEFA']
# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置大小 像素
plt.figure(figsize=(9, 6), dpi=100)
plt.axes(aspect='equal') # 保证饼图是个正圆
explodes = [0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5]
plt.pie(nums, pctdistance=0.75, shadow=True,
colors=colors, autopct='%.2f%%', explode=explodes,
startangle=15, labeldistance=1.1,
)
# 设置图例 调节图例位置
plt.legend(part_interval, bbox_to_anchor=(1.0, 1.0))
plt.title('招聘岗位的薪酬分布', fontsize=15)
plt.show()
运行效果如下:
招聘岗位给的薪酬在5K-10K和10K-15K区间所占的比例较大,也有一定比例的50K以上的高薪资岗位。
mport pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv(r'已清洗数据.csv')['education']
data = df.value_counts()
labels = ['大专', '本科', '硕士', '博士']
nums = [data[i] for i in labels]
print(labels)
print(nums)
colors = ['cyan', 'red', 'yellow', 'blue']
# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置显示风格
plt.style.use('ggplot')
# 设置大小 像素
plt.figure(figsize=(8, 6), dpi=100)
# 绘制水平柱状图
plt.barh(labels, nums, height=0.36, color=colors)
plt.title('招聘岗位对学历的要求', fontsize=16)
plt.xlabel('岗位数量', fontsize=12)
plt.show()
运行效果如下:
['大专', '本科', '硕士', '博士']
[2052, 6513, 761, 45]
由于得到的工作经验列里的数据并不规范,统计时需做特殊处理
代码如下:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv(r'已清洗数据.csv')['experience']
# 查看统计情况
data = df.value_counts()
print(data)
labels = ['无需经验', '1年经验', '2年经验', '3-4年经验', '5-7年经验', '8-9年经验', '10年以上经验']
nums = [data[i] for i in labels]
# 要求是在校生\应届生、本科 处理为无需经验 硕士处理为1年经验 博士处理为3-4年经验
nums[0] = nums[0] + 661 + 182
nums[1] = nums[1] + 59
nums[3] = nums[3] + 11
print(labels)
print(nums)
colors = ['#0000CD', '#FF0000', '#FFD700', '#7FFF00', '#FF1493', '#9400D3', '#87CEFA']
# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置显示风格
plt.style.use('ggplot')
# 设置大小 像素
plt.figure(figsize=(9, 6), dpi=100)
# 绘制水平柱状图
plt.barh(labels, nums, height=0.5, color=colors)
plt.title('招聘岗位对工作经验的要求', fontsize=16)
plt.xlabel('岗位数量', fontsize=12)
plt.show()
运行效果如下:
3-4年经验 3361
2年经验 2114
1年经验 1471
5-7年经验 1338
在校生\/应届生 661
无需经验 417
本科 182
8-9年经验 105
10年以上经验 64
硕士 59
招1人 57
招若干人 57
招2人 42
大专 30
招3人 14
博士 11
招5人 9
招4人 5
招10人 2
招7人 1
Name: experience, dtype: int64
['无需经验', '1年经验', '2年经验', '3-4年经验', '5-7年经验', '8-9年经验', '10年以上经验']
[1260, 1530, 2114, 3372, 1338, 105, 64]
代码如下:
import pandas as pd
import collections
from wordcloud import WordCloud
import matplotlib.pyplot as plt
df = pd.read_csv(r'已清洗数据.csv')['category']
data = list(df.values)
word_list = []
for i in data:
x = i.split('/')
for j in x:
word_list.append(j)
word_counts = collections.Counter(word_list)
# 绘制词云
my_cloud = WordCloud(
background_color='white', # 设置背景颜色 默认是black
width=900, height=500,
font_path='simhei.ttf', # 设置字体 显示中文
max_font_size=120, # 设置字体最大值
min_font_size=15, # 设置子图最小值
random_state=60 # 设置随机生成状态,即多少种配色方案
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud, interpolation='bilinear')
# 显示设置词云图中无坐标轴
plt.axis('off')
plt.show()
代码如下:
import pandas as pd
import collections
from wordcloud import WordCloud
import matplotlib.pyplot as plt
df = pd.read_csv(r'已清洗数据.csv')['job_welfare']
# 去除NaN 就地修改
df.dropna(axis=0, inplace=True)
data = list(df.values)
word_list = []
for i in data:
x = i.split(' ')
for j in x:
word_list.append(j)
word_counts = collections.Counter(word_list)
print(word_counts)
print(len(word_counts))
# 绘制词云
my_cloud = WordCloud(
background_color='white', # 设置背景颜色 默认是black
width=800, height=550,
font_path='simhei.ttf', # 设置字体 显示中文
max_font_size=112, # 设置字体最大值
min_font_size=12, # 设置子图最小值
random_state=60 # 设置随机生成状态,即多少种配色方案
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud, interpolation='bilinear')
# 显示设置词云图中无坐标轴
plt.axis('off')
plt.show()