本文以邻接矩阵作为存储结构,用Java实现图的遍历,话不多说,先给出的图的结构,如下:
1、深度优先搜索遍历
思想:
沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。(百度百科)
代码如下:
package com.ds.graph;
public class DFSTraverse {
// 构造图的边
private int[][] edges = { { 0, 1, 0, 0, 0, 1, 0, 0, 0 },
{ 1, 0, 1, 0, 0, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0, 0, 0, 0, 1 },
{ 0, 0, 1, 0, 1, 0, 1, 1, 1 }, { 0, 0, 0, 1, 0, 1, 0, 1, 0 },
{ 1, 0, 0, 0, 1, 0, 1, 0, 0 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0 },
{ 0, 0, 0, 1, 1, 0, 1, 0, 0 }, { 0, 1, 1, 1, 0, 0, 0, 0, 0 } };
// 构造图的顶点
private String[] vertexs = { "A", "B", "C", "D", "E", "F", "G", "H", "I" };
// 记录被访问顶点
private boolean[] verStatus;
// 顶点个数
private int vertexsNum = vertexs.length;
public void DFSTra() {
verStatus = new boolean[vertexsNum];
for (int i = 0; i < vertexsNum; i++) {
if (verStatus[i] == false) {
DFS(i);
}
}
}
// 递归深搜
private void DFS(int i) {
System.out.print(vertexs[i] + " ");
verStatus[i] = true;
for (int j = firstAdjVex(i); j >= 0; j = nextAdjvex(i, j)) {
if (!verStatus[j]) {
DFS(j);
}
}
}
// 返回与i相连的第一个顶点
private int firstAdjVex(int i) {
for (int j = 0; j < vertexsNum; j++) {
if (edges[i][j] > 0) {
return j;
}
}
return -1;
}
// 返回与i相连的下一个顶点
private int nextAdjvex(int i, int k) {
for (int j = (k + 1); j < vertexsNum; j++) {
if (edges[i][j] == 1) {
return j;
}
}
return -1;
}
// 测试
public static void main(String[] args) {
new DFSTraverse().DFSTra();
}
}
2、广度优先搜索遍历
思想:
从根节点开始,沿着树的宽度、按照层次依次遍历树的节点;
代码如下:
package com.ds.graph;
import java.util.LinkedList;
import java.util.Queue;
public class BFSTraverse_0100 {
// 构造图的边
private int[][] edges = { { 0, 1, 0, 0, 0, 1, 0, 0, 0 },
{ 1, 0, 1, 0, 0, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0, 0, 0, 0, 1 },
{ 0, 0, 1, 0, 1, 0, 1, 1, 1 }, { 0, 0, 0, 1, 0, 1, 0, 1, 0 },
{ 1, 0, 0, 0, 1, 0, 1, 0, 0 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0 },
{ 0, 0, 0, 1, 1, 0, 1, 0, 0 }, { 0, 1, 1, 1, 0, 0, 0, 0, 0 } };
// 构造图的顶点
private String[] vertexs = { "A", "B", "C", "D", "E", "F", "G", "H", "I" };
// 记录被访问顶点
private boolean[] verStatus;
// 顶点个数
private int vertexsNum = vertexs.length;
// 广搜
private void BFS() {
verStatus = new boolean[vertexsNum];
Queue temp = new LinkedList();
for (int i = 0; i < vertexsNum; i++) {
if (!verStatus[i]) {
System.out.print(vertexs[i] + " ");
verStatus[i] = true;
temp.offer(i);
while (!temp.isEmpty()) {
int j = temp.poll();
for (int k = firstAdjvex(j); k >= 0; k = nextAdjvex(j, k)) {
if (!verStatus[k]) {
System.out.print(vertexs[k] + " ");
verStatus[k] = true;
temp.offer(k);
}
}
}
}
}
}
// 返回与i相连的第一个顶点
private int firstAdjvex(int i) {
for (int j = 0; j < vertexsNum; j++) {
if (edges[i][j] > 0) {
return j;
}
}
return -1;
}
// 返回与i相连的下一个顶点
private int nextAdjvex(int i, int k) {
for (int j = (k + 1); j < vertexsNum; j++) {
if (edges[i][j] > 0) {
return j;
}
}
return -1;
}
// 测试
public static void main(String args[]) {
new BFSTraverse_0100().BFS();
}
}