** 安装opencv-python**
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
安装cmake
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple cmake
安装scikit-image
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-image
安装boost
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple boost
从此处链接下载dlib安装和对应dlib模型提取码为rbq4
dlib-19.17.99-cp37-cp37m-win_amd64.whl
进入下载的文件夹直接安装dlib
pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl
结果显示成功
(test1) C:\Users\86153\Desktop\dlib人脸识别>pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl
Processing c:\users\86153\desktop\dlib人脸识别\dlib-19.17.99-cp37-cp37m-win_amd64.whl
Installing collected packages: dlib
Successfully installed dlib-19.17.99
下面直接运行68Featurepoints
import cv2
import dlib
detector = dlib.get_frontal_face_detector()
img = cv2.imread(r'xiaofeifei.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
predictor = dlib.shape_predictor(r'shape_predictor_68_face_landmarks.dat')
faces = detector(img_gray, 1)
for face in faces:
shape = predictor(img, face) # 寻找人脸的68个标定点
# 遍历所有点,打印出其坐标,并圈出来
for pt in shape.parts():
pt_pos = (pt.x, pt.y)
cv2.circle(img, pt_pos, 2, (0, 0, 255), -1)
cv2.imshow("img",img)
cv2.waitKey(10000)
将dlib模型和小肥肥照片以及68特征点识别程序放在一个文件夹中,或者自己更改相应路径