在我们的应用中,大部分的计算是昂贵的,而且是可复用的,并且计算结果不会经常发生改变。这时候我们就可以将这些昂贵的计算结果缓存到内存中,下次使用的时候直接取出即可,而不用重新计算。这样可以节省大量的cpu和内存资源,提高系统的吞吐量。
本地缓存作用就是提高系统的运行速度,是一种空间换时间的取舍。它实质上是一个做key-value查询的字典,但是相对于我们常用HashMap它又有以下特点:
由于本地缓存是将计算结果缓存到内存中,所以我们往往需要设置一个最大容量来防止出现内存溢出的情况。这个容量可以是缓存对象的数量,也可以是一个具体的内存大小。在Guva中仅支持设置缓存对象的数量。
当缓存数量逼近或大于我们所设置的最大容量时,为了将缓存数量控制在我们所设定的阈值内,就需要丢弃掉一些数据。由于缓存的最大容量恒定,为了提高缓存的命中率,我们需要尽量丢弃那些我们之后不再经常访问的数据,保留那些即将被访问的数据。为了达到以上目的,我们往往会制定一些缓存淘汰策略,常用的缓存淘汰策略有以下几种:
合理的使用淘汰算法能够很明显的提升缓存命中率,但是也不应该一味的追求命中率,而是应在命中率和资源消耗中找到一个平衡。
在guava中默认使用LRU淘汰算法,而且在不修改源码的情况下也不支持自定义淘汰算法,这算是一种小小的遗憾吧。
Guva是google开源的一个公共java库,类似于Apache Commons,它提供了集合,反射,缓存,科学计算,xml,io等一些工具类库。
cache只是其中的一个模块。使用Guva cache能够方便快速的构建本地缓存。
首先需要在maven项目中加入guava依赖
com.google.guava
guava
25.0-jre
然后便可以通过Guava创建一个缓存,例如:
// 通过CacheBuilder构建一个缓存实例
Cache cache = CacheBuilder.newBuilder()
.maximumSize(100) // 设置缓存的最大容量
.expireAfterWrite(1, TimeUnit.MINUTES) // 设置缓存在写入一分钟后失效
.concurrencyLevel(10) // 设置并发级别为10
.recordStats() // 开启缓存统计
.build();
// 放入缓存
cache.put("key", "value");
// 获取缓存
String value = cache.getIfPresent("key");
Guava的缓存有许多配置选项,所以为了简化缓的创建过程,使用了Builder设计模式;Builder使用的是链式编程的思想,也就是每次调用方法后返回的是对象本生,这样可以极大的简化配置过程。
上面的代码演示了使用Guava创建了一个基于内存的本地缓存,并指定了一些缓存的参数,如缓存容量、缓存过期时间、并发级别等,随后通过put方法放入一个缓存并使用getIfPresent来获取它。
使用CacheBuilder我们能构建出两种类型的cache,他们分别是Cache与LoadingCache。
Cache
Cache是通过CacheBuilder的build()方法构建,它是Gauva提供的最基本的缓存接口,并且它提供了一些常用的缓存api:
Cache
LoadingCache
LoadingCache继承自Cache,在构建LoadingCache时,需要通过CacheBuilder的build(CacheLoader super K1, V1> loader)方法构建:
CacheBuilder.newBuilder()
.build(new CacheLoader() {
@Override
public String load(String key) throws Exception {
// 缓存加载逻辑
...
}
});
LoadingCache,顾名思义,它能够通过CacheLoader自发的加载缓存:
LoadingCache loadingCache = CacheBuilder.newBuilder().build(new CacheLoader() {
@Override
public Object load(Object key) throws Exception {
return null;
}
});
// 获取缓存,当缓存不存在时,会通过CacheLoader自动加载,该方法会抛出ExecutionException异常
loadingCache.get("k1");
// 以不安全的方式获取缓存,当缓存不存在时,会通过CacheLoader自动加载,该方法不会抛出异常
loadingCache.getUnchecked("k1");
Guava提供了设置并发级别的api,使得缓存支持并发的写入和读取。同ConcurrentHashMap类似Guava cache的并发也是通过分离锁实现。在一般情况下,将并发级别设置为服务器cpu核心数是一个比较不错的选择。
CacheBuilder.newBuilder()
// 设置并发级别为cpu核心数
.concurrencyLevel(Runtime.getRuntime().availableProcessors())
.build();
我们在构建缓存时可以为缓存设置一个合理大小初始容量,由于Guava的缓存使用了分离锁的机制,扩容的代价非常昂贵。所以合理的初始容量能够减少缓存容器的扩容次数。
CacheBuilder.newBuilder()
// 设置初始容量为100
.initialCapacity(100)
.build();
在前文提到过,在构建本地缓存时,我们应该指定一个最大容量来防止出现内存溢出的情况。在guava中除了提供基于数量,和基于内存容量两种回收策略外,还提供了基于引用的回收。
基于最大数量的回收策略非常简单,我们只需指定缓存的最大数量maximumSize即可:
CacheBuilder.newBuilder()
.maximumSize(100) // 缓存数量上限为100
.build();
使用基于最大容量的的回收策略时,我们需要设置2个必要参数:
这里我们例举一个key和value都是String类型缓存:
CacheBuilder.newBuilder()
.maximumWeight(1024 * 1024 * 1024) // 设置最大容量为 1M
// 设置用来计算缓存容量的Weigher
.weigher(new Weigher() {
@Override
public int weigh(String key, String value) {
return key.getBytes().length + value.getBytes().length;
}
}).build();
当缓存的最大数量/容量逼近或超过我们所设置的最大值时,Guava就会使用LRU算法对之前的缓存进行回收。
基于引用的回收策略,是java中独有的。在java中有对象自动回收机制,依据程序员创建对象的方式不同,将对象由强到弱分为强引用、软引用、弱引用、虚引用。对于这几种引用他们有以下区别:
强引用
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。
Object o=new Object(); // 强引用
当内存空间不足,垃圾回收器不会自动回收一个被引用的强引用对象,而是会直接抛出OutOfMemoryError错误,使程序异常终止。
软引用
相对于强引用,软引用是一种不稳定的引用方式,如果一个对象具有软引用,当内存充足时,GC不会主动回收软引用对象,而当内存不足时软引用对象就会被回收。
SoftReference softRef=new SoftReference(new Object()); // 软引用
Object object = softRef.get(); // 获取软引用
使用软引用能防止内存泄露,增强程序的健壮性。但是一定要做好null检测。
弱引用
弱引用是一种比软引用更不稳定的引用方式,因为无论内存是否充足,弱引用对象都有可能被回收。
WeakReference weakRef = new WeakReference(new Object()); // 弱引用
Object obj = weakRef.get(); // 获取弱引用
虚引用
而虚引用这种引用方式就是形同虚设,因为如果一个对象仅持有虚引用,那么它就和没有任何引用一样。在实践中也几乎没有使用。
在Guava cache中支持,软/弱引用的缓存回收方式。使用这种方式能够极大的提高内存的利用率,并且不会出现内存溢出的异常。
CacheBuilder.newBuilder()
.weakKeys() // 使用弱引用存储键。当键没有其它(强或软)引用时,该缓存可能会被回收。
.weakValues() // 使用弱引用存储值。当值没有其它(强或软)引用时,该缓存可能会被回收。
.softValues() // 使用软引用存储值。当内存不足并且该值其它强引用引用时,该缓存就会被回收
.build();
通过软/弱引用的回收方式,相当于将缓存回收任务交给了GC,使得缓存的命中率变得十分的不稳定,在非必要的情况下,还是推荐基于数量和容量的回收。
在缓存构建完毕后,我们可以通过Cache提供的接口,显式的对缓存进行回收,例如:
// 构建一个缓存
Cache cache = CacheBuilder.newBuilder().build();
// 回收key为k1的缓存
cache.invalidate("k1");
// 批量回收key为k1、k2的缓存
List needInvalidateKeys = new ArrayList<>();
needInvalidateKeys.add("k1");
needInvalidateKeys.add("k2");
cache.invalidateAll(needInvalidateKeys);
// 回收所有缓存
cache.invalidateAll();
Guava也提供了缓存的过期策略和刷新策略。
缓存的过期策略分为固定时间和相对时间。
固定时间一般是指写入后多长时间过期,例如我们构建一个写入10分钟后过期的缓存:
CacheBuilder.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES) // 写入10分钟后过期
.build();
// java8后可以使用Duration设置
CacheBuilder.newBuilder()
.expireAfterWrite(Duration.ofMinutes(10))
.build();
相对时间一般是相对于访问时间,也就是每次访问后,会重新刷新该缓存的过期时间,这有点类似于servlet中的session过期时间,例如构建一个在10分钟内未访问则过期的缓存:
CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES) //在10分钟内未访问则过期
.build();
// java8后可以使用Duration设置
CacheBuilder.newBuilder()
.expireAfterAccess(Duration.ofMinutes(10))
.build();
在Guava cache中支持定时刷新和显式刷新两种方式,其中只有LoadingCache能够进行定时刷新。
定时刷新
在进行缓存定时刷新时,我们需要指定缓存的刷新间隔,和一个用来加载缓存的CacheLoader,当达到刷新时间间隔后,下一次获取缓存时,会调用CacheLoader的load方法刷新缓存。例如构建个刷新频率为10分钟的缓存:
CacheBuilder.newBuilder()
// 设置缓存在写入10分钟后,通过CacheLoader的load方法进行刷新
.refreshAfterWrite(10, TimeUnit.SECONDS)
// jdk8以后可以使用 Duration
// .refreshAfterWrite(Duration.ofMinutes(10))
.build(new CacheLoader() {
@Override
public String load(String key) throws Exception {
// 缓存加载逻辑
...
}
});
显式刷新
在缓存构建完毕后,我们可以通过Cache提供的一些借口方法,显式的对缓存进行刷新覆盖,例如:
// 构建一个缓存
Cache cache = CacheBuilder.newBuilder().build();
// 使用put进行覆盖刷新
cache.put("k1", "v1");
// 使用Map的put方法进行覆盖刷新
cache.asMap().put("k1", "v1");
// 使用Map的putAll方法进行批量覆盖刷新
Map needRefreshs = new HashMap<>();
needRefreshs.put("k1", "v1");
cache.asMap().putAll(needRefreshs);
// 使用ConcurrentMap的replace方法进行覆盖刷新
cache.asMap().replace("k1", "v1");
对于LoadingCache,由于它能够自动的加载缓存,所以在进行刷新时,不需要显式的传入缓存的值:
LoadingCache loadingCache = CacheBuilder
.newBuilder()
.build(new CacheLoader() {
@Override
public String load(String key) throws Exception {
// 缓存加载逻辑
return null;
}
});
// loadingCache 在进行刷新时无需显式的传入 value
loadingCache.refresh("k1");