编写软件的过程中,程序员面临开着耦合性,内聚性以及可维护性、可拓展性,重用性,灵活性等多方面的挑战,设计模式就是为了让程序(软件),具有更好的
- 代码重用性(即:相同功能的代码,不能重复编写);
- 可读性(即:编程规范性,便于其他程序员阅读与理解);
- 可拓展性(即:当需要增加新的功能时,非常的方便,称为可维护);
- 可靠性(即:当我们增加新的功能时,对原有的功能没有影响);
- 使程序呈现高内聚,低耦合的特性。
设计模式的原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么这样设计的依据)。
设计模式的6大原则,单一职责原则,开放封闭原则,里式替换原则,依赖导致原则,迪米特原则和接口隔离原则。
就一个类而言,应该仅有一个引起它变化的原因、
通俗的讲就是我们不要让一个类承担过多的职责,如果一个类承担的职责过多,就等于把这些职责耦合在一起,一个职责的变化可能会削弱或者抑制这个类完成其他职责的能力。
这种耦合会导致脆弱的设计,当变化发生时,设计会遭受到破坏。
比如我们会看到一些 Android 开发者在写 Activity 中 写Bean 文件,网络数据处理,如果有列表的话,Adapter也写在 Activity中。至于这么做的原因,除了简单粗暴,好找也没什么理由了,那么把其拆分到其他类岂不是更好找?如果Activity过于臃肿,行数过多,显然不是什么好事。
如果我们要修改Bean 文件,网络处理和 Adapter 都需要上这个Activity 来修改,就会导致引起该 Activity 变化的原因太多,我们在版本维护时也比较头痛。这也就严重违背了定义: 就一个类而言,应该仅有一个引起它变化的原因。
单一职责的划分界限不是很清晰,很多时候就要靠个人经验来界定,因此它是一个饱受争议却又极其重要的原则
代码演示
方案一:
public class SingleResponsibility1 {
public static void main(String[] args) {
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机");
}
}
// 交通工具类
// 方式 1
// 1. 在方式 1 的 run 方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
方案二:
public class SingleResponsibility2 {
public static void main(String[] args) {
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
//方案 2 的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改 Vehicle 类,改动的代码会比较少=>方案 3
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
方案三:
public class SingleResponsibility3 {
public static void main(String[] args) {
Vehicle2 vehicle2 = new Vehicle2();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
//方式 3 的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
}
单一职责原则注意事项和细节
降低类的复杂度,一个类只负责一项职责。
提高类的可读性,可维护性
降低变更引起的风险
通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
建立单一接口,不要建立庞大臃肿的接口:尽量细化接口,接口中的方法尽量少。也就是说,我们要为各个类建立专用的接口,而不要试图建立一个一个很庞大的接口供所有依赖他的类调用。采取接口隔离原则对接口进行约束时,要注意以下几点:
- 接口尽量小,但是要有限度。对接口进行细化可以提高程序设计的灵活性;但是如果过小,则会造成接口数量过多,使设计复杂化。所以,一定要适度。
- 为依赖接口的类定制服务,只暴露给调用的类他需要的方法,他不需要的方法则隐藏起来,只有专注的为一个模块提供定制服务,才能建立最小的依赖关系。
- 为提高内聚,减少对外交互。接口方法尽量少用public 修饰。接口是对外的承诺,承诺越少对系统的开发越有利,变更的风险也越少。
代码演示
方案一:没有使用接口隔离原则代码
public class Segregation1 {
public static void main(String[] args) {
}
}
interface Interface1 {
void operation1();
void operation2();
void operation3();
void operation4();
void operation5();
}
class B implements Interface1 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
public void operation4() {
System.out.println("B 实现了 operation4");
}
public void operation5() {
System.out.println("B 实现了 operation5");
}
}
class D implements Interface1 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation2() {
System.out.println("D 实现了 operation2");
}
public void operation3() {
System.out.println("D 实现了 operation3");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { //A 类通过接口 Interface1 依赖(使用) B 类,但是只会用到 1,2,3 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface1 i) {
i.operation2();
}
public void depend3(Interface1 i) {
i.operation3();
}
}
class C { //C 类通过接口 Interface1 依赖(使用) D 类,但是只会用到 1,4,5 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface1 i) {
i.operation4();
}
public void depend5(Interface1 i) {
i.operation5();
}
}
方案二:
类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法
将接口 Interface1 拆分为独立的几个接口,类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
接口 Interface1 中出现的方法,根据实际情况拆分为三个接口
public class Segregation1 {
public static void main(String[] args) {
A a = new A();
a.depend1(new B()); // A 类通过接口去依赖 B 类
a.depend2(new B());
a.depend3(new B());
C c = new C();
c.depend1(new D()); // C 类通过接口去依赖(使用)D 类
c.depend4(new D());
c.depend5(new D());
}
}
// 接口 1
interface Interface1 {
void operation1();
}
// 接口 2
interface Interface2 {
void operation2();
void operation3();
}
// 接口 3
interface Interface3 {
void operation4();
void operation5();
}
class B implements Interface1, Interface2 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
}
class D implements Interface1, Interface3 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { // A 类通过接口 Interface1,Interface2 依赖(使用) B 类,但是只会用到 1,2,3 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface2 i) {
i.operation2();
}
public void depend3(Interface2 i) {
i.operation3();
}
}
class C { // C 类通过接口 Interface1,Interface3 依赖(使用) D 类,但是只会用到 1,4,5 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface3 i) {
i.operation4();
}
public void depend5(Interface3 i) {
i.operation5();
}
}
高层模块(调用端)不应该依赖底层模块,两者都应该依赖于抽象。抽象不应该依赖于细节(实现类),细节应该依赖于抽象。
在Java中,抽象指接口或者抽象类,两者都是不能直接被实例化;细节就是实现类,实现接口或者继承抽象类而产生的就是细节,也就是可以加上一个关键字 new 产生的对象。高层模块就是调用端,低层模块就是具体实现类。 依赖倒置原则在 java 中的表现就是,模块间的依赖通过抽象发生,实现类之间不发生直接依赖关系,其依赖关系就是通过接口或者抽象类产生的。如果类与类直接依赖细节,那么就会直接耦合。如此一来,就会同时修改依赖者代码,这样限制了可扩展性。
抽象不应该依赖细节,细节应该依赖抽象,
依赖倒转(倒置)的中心思想是面向接口编程;
使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成
代码演示 :
方案一:
public class DependecyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//完成 Person 接收消息的功能
//方式 1 分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时 Perons 也要增加相应的接收方法
//3. 解决思路:引入一个抽象的接口 IReceiver, 表示接收者, 这样 Person 类与接口 IReceiver 发生依赖
// 因为 Email, WeiXin 等等属于接收的范围,他们各自实现 IReceiver 接口就 ok, 这样我们就符号依赖倒转原则
class Person {
public void receive(Email email ) {
System.out.println(email.getInfo());
}
}
方案二:依据依赖倒转原则
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person(); person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
public String getInfo();
}
class Email implements IReceiver {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式 2
class Person {
//这里我们是对接口的依赖
public void receive(IReceiver receiver ) {
System.out.println(receiver.getInfo());
}
}
依赖倒转原则的注意事项和细节:
所有引用基类(父类)的地方必须能透明的使用其子类的对象
在软件中将一个基类对象替换成其子类对象,程序将不会产生任何错误和异常,反过来则不成立,如果一个软件实体使用的是一个子类对象的话,那么它不一定能够使用子类对象。里式替换原则是实现开放封闭原则的重要方式之一。由于使用基类对象的地方都可以使用子类对象, 因此在程序中尽量使用基类类型来对对象进行定义,而在运行时在确定其子类类型,用子类对象来替换父类对象。在使用里式替换原则是需要注意以下几个问题:
子类的所有方法必须在父类中声明,或子类必须实现父类中声明的所有方法。根据里式替换原则,为了保证系统的扩展性,在程序中通常使用父类来定义。如果一个方法只存于子类中,在父类中不提供相应的声明,则无法在以父类定义的对象中使用该方法。
我们运用里式替换原则时,尽量把父类设计为抽象类或接口,让子类继承父类或实现父接口,并实现在父类中声明的方法、运行时,子类实例替换父类实例,我们可以很方便的扩展系统功能,同时无序修改原有子类的代码;增加新的功能可以通过增加一个新的子类来实现。里式替换原则是开放封闭原则的具体实现手段之一。
在java语言中,在编译阶段,java编译器会检查一个程序是否符合里式替换原则。这是一个与实现无关,纯语法意义上的检查,但Java编译器的检查是有局限性的。
如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法;
里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题。
代码演示:
方案一
public class Liskov {
public static void main(String[] args) {
// TODO Auto-generated method stub
A a = new A();
System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
System.out.println("11-3=" + b.func1(11, 3));
//这里本意是求出 11-3 System.out.println("1-8=" + b.func1(1, 8));
// 1-8 System.out.println("11+3+9=" + b.func2(11, 3));
}
}
// A 类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B 类继承了 A
// 增加了一个新功能:完成两个数相加,然后和 9 求和
class B extends A {
//这里,重写了 A 类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
方案二:
我们发现原来运行正常的相减功能发生了错误。原因就是类 B 无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的,复用性会比较差。特别是运行多态比较频繁的时候;
通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。
public class Liskov { public static void main(String[] args) { A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); //因为 B 类不再继承 A 类,因此调用者,不会再 func1 是求减法//调用完成的功能就会很明确 System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出 11+3 System.out.println("1+8=" + b.func1(1, 8));// 1+8 System.out.println("11+3+9=" + b.func2(11, 3)); //使用组合仍然可以使用到 A 类相关方法System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出 11-3 } } //创建一个更加基础的基类 class Base { //把更加基础的方法和成员写到 Base 类 } // A 类 class A extends Base { // 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; } } // B 类继承了 A // 增加了一个新功能:完成两个数相加,然后和 9 求和 class B extends Base { //如果 B 需要使用 A 类的方法,使用组合关系 private A a = new A(); //这里,重写了 A 类的方法, 可能是无意识 public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } //我们仍然想使用 A 的方法 public int func3(int a, int b) { return this.a.func1(a, b); } }
类,模块,函数等应该是可以扩展的,但是不可以修改
开放封闭有两个含义:一个是对于扩展是开放,另一个是对于修改是封闭的。
对于开发者莱索,需求肯定是变化的,但是有新需求,我们就要把类重新改一遍,这显然是令人头痛的,所以我们设计程序时,面对需求的改变要尽可能得保证相对稳定,尽量通过扩展的方式来实现变化,而不是通过修改原有的代码来实现。
假设我们要实现一个列表,一开始只有查询的功能,后来产品又要新增 添加 功能,过几天又要增加 删除 功能。大多数人的做法是写一个方法,然后通过传入不同的值控制方法实现不同的功能。但是如果又要新增功能,我们还得修改方法。用开发封闭原则解决就是增加一个抽象的功能类,让添加,删除和查询作为这个抽象功能类的子类。这样如果我们再新增功能,你就会发现自己无须修改原有的类,只需要添加一个功能类的子类实现功能类的方法就可以了
当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
代码演示:
方案一 :
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收 Shape 对象,然后根据 type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}
//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
//绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
//Shape 类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
方案一分析:
优点是比较好理解,简单易操作。
缺点是违反了设计模式的 ocp 原则,即对扩展开放(提供方),对修改关闭(使用方)。即当我们给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码。
比如我们这时要新增加一个图形种类 三角形,我们需要做如下修改,修改的地方较多。
方案二:
思路:把创建 Shape 类做成抽象类,并提供一个抽象的 draw 方法,让子类去实现即可,这样我们有新的图形种类时,只需要让新的图形类继承 Shape,并实现 draw 方法即可,使用方的代码就不需要修 -> 满足了开闭原则。
public class Ocp {
public static void main(String[] args) {
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
graphicEditor.drawShape(new OtherGraphic());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收 Shape 对象,调用 draw 方法
public void drawShape(Shape s) {
s.draw();
}
}
//Shape 类,基类
abstract class Shape {
int m_type;
public abstract void draw();//抽象方法
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制矩形 ");
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制圆形 ");
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制三角形 ");
}
}
//新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}
@Override
public void draw() {
// TODO Auto-generated method stub
System.out.println(" 绘制其它图形 ");
}
}
一个软件实体应当少的与其他实体发生相互作用。
这也被称最好知识原则。如果一个系统符合迪米特原则,那么当其中某一个模块发生修改时,就会尽量少的影响其他模块。迪米特原则要求我们在设计系统是,应该尽量减少对象之间的交互。如果两个对象之间不必彼此直接通向,那么这两个对象就不应当发生任何直接的相互作用。如果其中的一个对象需要调用另一个对象的某一个方法,则可以通过第三者转发这个调用。简言之,就是通过引入一个合理的第三者来降低现有对象之间的耦合度。在将迪米特原则运用到系统设计中时,要注意以下几点:
- 在类的划分上,应当尽量创建松耦合的类。类之间的耦合越低,就越有利于复用。一个处在松耦合中的类一旦被修改,则不会对关联的类造成太大波及。
- 在类的结构上,每一个类都应当尽量降低其成员变量和成员函数的访问权限。
- 在对其他类的引用上,一个对象对其他对象的引用应当降到最低。
迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息;
迪米特法则还有个更简单的定义:只与直接的朋友通信;
直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
代码演示:
有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID 和学院员工的 id
方案一:
public class Demeter1 {
public static void main(String[] args) {
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager(); //输出学院的员工 id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List getAllEmployee() {
List list = new ArrayList();
for (int i = 0; i < 10; i++) { //这里我们增加了 10 个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工 id= " + i);
list.add(emp);
}
return list;
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List getAllEmployee() {
List list = new ArrayList();
for (int i = 0; i < 5; i++) { //这里我们增加了 5 个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工 id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 这里的 CollegeEmployee 不是 SchoolManager 的直接朋友
//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
//3. 违反了 迪米特法则
//获取到学院员工
List list1 = sub.getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
//获取到学校总部员工
List list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
方案二:方案一设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友 (分析);按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合,对代码按照迪米特法则 进行改进;
//客户端
public class Demeter1 {
public static void main(String[] args) {
System.out.println("~~~使用迪米特法则的改进~~~");
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager(); //输出学院的员工 id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List getAllEmployee() {
List list = new ArrayList();
for (int i = 0; i < 10; i++) { //这里我们增加了 10 个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工 id= " + i);
list.add(emp);
}
return list;
}
//输出学院员工的信息
public void printEmployee() {
//获取到学院员工
List list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List getAllEmployee() {
List list = new ArrayList();
for (int i = 0; i < 5; i++) { //这里我们增加了 5 个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工 id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
sub.printEmployee();
//获取到学校总部员工
List list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}