Given a collection of intervals, merge all overlapping intervals.
For example,
Given [1,3],[2,6],[8,10],[15,18]
,
return [1,6],[8,10],[15,18]
.
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as[1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as[1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
思路:
第一题的思路是先排序,然后依次向下比较归并。
第二题可以先插入再用第一题的归并方法。但是这里采用计算interval的覆盖位置的方法,相对复杂一些。
题解:
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
bool operator< (const Interval& i1, const Interval& i2)
{
return i1.start < i2.start;
}
class Solution {
public:
bool try_merge_next (Interval& i1, const Interval& i2)
{
if (i1.end < i2.start)
return false; // not contacting
else
{
i1.end = max (i1.end, i2.end);
return true;
}
}
vector merge (vector& intervals)
{
vector ret;
sort (begin (intervals), end (intervals));
if (!intervals.empty())
{
ret.push_back (intervals.front());
for (auto & i : intervals)
if (!try_merge_next (ret.back(), i))
ret.push_back (i);
}
return ret;
}
};
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
bool is_prior (const Interval& i, int val)
{
return (i.start < val && i.end < val);
}
bool is_after (const Interval& i, int val)
{
return (i.start > val && i.end > val);
}
vector insert (vector& intervals, Interval ni)
{
vector ret;
if (intervals.empty())
{
ret.push_back (ni);
return ret;
}
if (is_after (intervals.front(), ni.end))
{
ret.push_back (ni);
copy (begin (intervals), end (intervals), back_inserter (ret));
return ret;
}
if (is_prior (intervals.back(), ni.start))
{
copy (begin (intervals), end (intervals), back_inserter (ret));
ret.push_back (ni);
return ret;
}
// now we have to find the exact position
auto iter = begin (intervals);
auto last = end (intervals);
while (is_prior (*iter, ni.start))
ret.push_back (*iter++);
ni.start = min (ni.start, iter->start);
while (iter != last && !is_after (*iter, ni.end)) ++iter;
ni.end = max (ni.end, (iter - 1)->end);
ret.push_back (ni);
copy (iter, last, back_inserter (ret));
return ret;
}
};