参考博文:
https://blog.csdn.net/v_july_v/article/details/7041827
原文讲的比较全面,加上图解,理解起来也不是很难。
这里采用了优化后的next数组,难点在于next数组的求解,而个人认为next数组求解时递归的部分可能要稍微难理解一点。
具体讲解参考原博,下面是python版本的KMP算法。
class Solution:
# 字符串匹配,匹配成功返回目标串中第一次出现的下标,失败返回-1
def KMP(self, target, pattern):
next = self.getNext(pattern)
print(next)
i = j = 0
while i < len(target) and j < len(pattern):
# i不存在回溯,匹配则i加1,否则移动模式串j的位置以匹配目标串
if j == -1 or target[i] == pattern[j]:
i += 1
j += 1
else:
j = next[j]
if j == len(pattern):
return i-j
else:
return -1
# 计算next数组
def getNext(self,pattern):
next = [0]*len(pattern)
next[0] = -1
k = -1 # 前缀结束索引
j = 0 # 后缀结束索引
while j < len(pattern)-1:
if k == -1 or pattern[k] == pattern[j]:
k += 1
j += 1
if pattern[k] == pattern[j]:
next[j] = next[k]
else:
next[j] = k
else:
k = next[k] # 寻找更短的后缀
return next
if __name__ == '__main__':
p = Solution()
target = input('Enter the target string:')
pattern = input('Enter the pattern string:')
while pattern != '-1':
print(p.KMP(target, pattern))
pattern = input('Enter the pattern string:')