torch.nn.functional.normalize(input, p=2, dim=1, eps=1e-12, out=None)
功能:将某一个维度除以那个维度对应的范数(默认是2范数)。
v = v max ( ∥ v ∥ p , ϵ ) v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)} v=max(∥v∥p,ϵ)v
主要讲以下三种情况:
输入为一维Tensor
a = torch.Tensor([1,2,3])
torch.nn.functional.normalize(a, dim=0)
tensor([0.2673, 0.5345, 0.8018])
可以看到每一个数字都除以了这个Tensor
的范数: 1 2 + 2 2 + 3 2 = 3.7416 \sqrt{1^2+2^2+3^2}=3.7416 12+22+32 =3.7416
输入为二维Tensor
b = torch.Tensor([[1,2,3], [4,5,6]])
torch.nn.functional.normalize(b, dim=0)
tensor([[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]])
因为dim=0
,所以是对列操作。以第一列为例,整体除以了第一列的范数: 1 2 + 4 2 = 4.1231 \sqrt{1^2+4^2}=4.1231 12+42 =4.1231
b = torch.Tensor([[1,2,3], [4,5,6]])
torch.nn.functional.normalize(b, dim=1)
tensor([[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]])
因为dim=1
,所以是对行操作。以第一行为例,整体除以了第一行的范数: 1 2 + 2 2 + 3 2 = 3.7416 \sqrt{1^2+2^2+3^2}=3.7416 12+22+32 =3.7416
输入为三维Tensor
b = torch.Tensor([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])
torch.nn.functional.normalize(b, dim=2)
tensor([[[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]],
[[0.2673, 0.5345, 0.8018],
[0.4558, 0.5698, 0.6838]]])
注意此时dim=2
,所以是对第三个维度,也就是每一行操作。以第一行为例,除以了第一行的范数: 1 2 + 2 2 + 3 2 = 3.7416 \sqrt{1^2+2^2+3^2}=3.7416 12+22+32 =3.7416
b = torch.Tensor([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])
torch.nn.functional.normalize(b, dim=1)
tensor([[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]],
[[0.2425, 0.3714, 0.4472],
[0.9701, 0.9285, 0.8944]]])
注意此时dim=1
,所以是对第二个维度操作。第二个维度是二维数组,所以此时相当于对二维数组的第0维操作。
以[[1,2,3], [4,5,6]]
为例,此时要对它的列操作。第一列要除以这一列的范数: 1 2 + 4 2 = 4.1231 \sqrt{1^2+4^2}=4.1231 12+42 =4.1231。
b = torch.Tensor([[[1,2,3], [4,5,6]], [[1,2,3], [4,5,6]]])
torch.nn.functional.normalize(b, dim=0)
tensor([[[0.7071, 0.7071, 0.7071],
[0.7071, 0.7071, 0.7071]],
[[0.7071, 0.7071, 0.7071],
[0.7071, 0.7071, 0.7071]]])
dim=0
的时候现在还看不懂,以后再补吧。
参考:pytorch-document