微信公众号:[Amos博客]
TreadPoolexecutor源码解析
类关系图
Executor接口
ExecutorService接口
AbstractExecutorService
成员变量
构造函数
Worker类解析
Worker简介
成员变量
构造方法
execute()解析
addWorker()解析
runWorker()解析
getTask()解析
processWorkerExit()解析
tryTerminate()解析
interruptIdleWorker()解析
监控线程池
Executor提供execute()用来启动任务
public interface Executor {
//用来启动任务
void execute(Runnable command);
}
ExecutorService提供了一些管理线程池方法和任务执行的方法
public interface ExecutorService extends Executor {
//关闭线程池,队列已经存在的任务可以继续执行
void shutdown();
//关闭线程池,中断未执行的任务
List shutdownNow() ;
//判断是否关闭
boolean isShutdown();
//判断是否终止
boolean isTerminated();
//设置超时终止
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException;
//提交Callable任务
Future submit(Callable task) ;
//提交Runable任务,带返回值
Future submit(Runnable task, T result) ;
//提交Runnable任务不带返回值
Future> submit(Runnable task);
//invokeAll()是同步的,其需要等待任务的完成,才能返回。submit()是异步的
List> invokeAll(Collection extends Callable> tasks)
throws InterruptedException;
List> invokeAll(Collection extends Callable> tasks,
long timeout, TimeUnit unit)
throws InterruptedException;
//invokeAny()取第一个任务的返回值,然后调用interrupt方法中断其它任务。
T invokeAny(Collection extends Callable> tasks)
throws InterruptedException, ExecutionException;
T invokeAny(Collection extends Callable> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
AbstractExecutorService类重写某些方法。自定义了newTaskFor()用于构建RunnableFuture。
/**
* 线程池使用一个int变量存储线程池状态和工作线程数
* int4个字节,32位,用高三位存储线程池状态,低29位存储工作线程数
* 为什么使用一个变量来同时表示线程状态和线程数?就是节省空间。咨询了一下写c的朋友,他们经常这么写
**/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//COUNT_BITS=29
private static final int COUNT_BITS = Integer.SIZE - 3;
//理论上线程池最大线程数量CAPACITY=536870911
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
/**
* 线程池状态转换
* RUNNING -> SHUTDOWN
* RUNNING or SHUTDOWN -> STOP
* SHUTDOWN or STOP -> TIDYING
* TIDYING -> TERMINATED terminated()执行完后变为该TERMINATED
*/
//接受新任务,可以处理阻塞队列里的任务
private static final int RUNNING = -1 << COUNT_BITS;
//不接受新任务,可以处理阻塞队列里的任务。执行shutdown()会变为SHUTDOWN
private static final int SHUTDOWN = 0 << COUNT_BITS;
//不接受新的任务,不处理阻塞队列里的任务,中断正在处理的任务。执行shutdownNow()会变为STOP
private static final int STOP = 1 << COUNT_BITS;
//临时过渡状态,所有的任务都执行完了,当前线程池有效的线程数量为0,这个时候线程池的状态是TIDYING,执行terminated()变为TERMINATED
private static final int TIDYING = 2 << COUNT_BITS;
//终止状态,terminated()调用完成后的状态
private static final int TERMINATED = 3 << COUNT_BITS;
//获取线程池状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//获取工作线程数
private static int workerCountOf(int c) { return c & CAPACITY; }
//初始化ctl
private static int ctlOf(int rs, int wc) { return rs | wc; }
//用于保存等待执行的任务的阻塞队列。比如LinkedBlockQueue,SynchronousQueue等
private final BlockingQueue workQueue;
//重入锁,更新线程池核心大小、线程池最大大小等都有用到
private final ReentrantLock mainLock = new ReentrantLock();
//用于存储woker
private final HashSet workers = new HashSet();
//用于终止线程池
private final Condition termination = mainLock.newCondition();
//记录线程池中曾经出现过的最大线程数
private int largestPoolSize;
//完成任务数量
private long completedTaskCount;
//线程工厂
private volatile ThreadFactory threadFactory;
/**
* rejectedExecutionHandler:任务拒绝策略
* DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务
* AbortPolicy:抛出异常。这也是默认的策略
* CallerRunsPolicy:用调用者所在线程来运行任务
* DiscardPolicy:不处理,丢弃掉
*/
private volatile RejectedExecutionHandler handler;
/**
* 线程空闲时间
* 当线程空闲时间达到keepAliveTime,该线程会退出,直到线程数量等于corePoolSize。
* 如果allowCoreThreadTimeout设置为true,则所有线程均会退出。
*/
private volatile long keepAliveTime;
//是否允许核心线程空闲超时退出,默认值为false。
private volatile boolean allowCoreThreadTimeOut;
/**
* 核心线程数
* 核心线程会一直存活,即使没有任务需要处理,当线程数小于核心线程数时。
* 即使现有的线程空闲,线程池也会优先创建新线程来处理任务,而不是直接交给现有的线程处理。
* 核心线程数在初始化时不会创建,只有提交任务的时候才会创建。核心线程在allowCoreThreadTimeout为true的时候超时会退出。
*/
private volatile int corePoolSize;
/** 最大线程数
* 当线程数大于或者等于核心线程,且任务队列已满时,线程池会创建新的线程,直到线程数量达到maxPoolSize。
* 如果线程数已等于maxPoolSize,且任务队列已满,则已超出线程池的处理能力,线程池会采取拒绝操作。
*/
private volatile int maximumPoolSize;
//默认的拒绝策略:抛出异常
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
private static final RuntimePermission shutdownPerm =
new RuntimePermission("modifyThread");
//直接提供了一个最终调用的构造函数
//大致逻辑就是给线程池核心参数赋值
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler ) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
//转为纳秒
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
Woeker类是ThreadPoolExecutor一个内部类。此类继AbstractQueuedSynchronizer,
目的在于判断线程是否空闲以及是否可以被中断。实现Runnable,在run()中调用了runWorker()。
Worker类中firstTask用来保存传入的任务,thread是在调用构造方法时通过ThreadFactory来创建的线程,是用来处理任务的线程。注意:这个线程并不是task线程。
/** 工作线程空间,由线程池中所设置的线程工厂创建*/
final Thread thread;
/** 在构造方法中传入的任务*/
Runnable firstTask;
/** 执行完任务的总数*/
volatile long completedTasks;
Worker(Runnable firstTask) {
//state设置为-1是为了禁止在执行任务前对任务进行中断。
setState(-1);
//提交的task
this.firstTask = firstTask;
//从线程工厂获取的线程,注意这个thread并不是用户线程
this.thread = getThreadFactory().newThread(this);
}
public void execute(Runnable command) {
//判断提交的任务是否为空
if (command == null)
throw new NullPointerException();
//获取线程池状态和工作线程数量结合体(下文统称为ctl)
int c = ctl.get();
//判断工作线程数量是否小于核心线程数
if (workerCountOf(c) < corePoolSize) {
//把任务添加到worker,添加成功则返回
if (addWorker(command, true))
return;
//再次获取ctl
c = ctl.get();
}
//如果线程池状态是正在运行并且添加一个任务到队列成功
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
//再次校验线程池状态,如果状态不是RUNNING则需要从队列中移除任务
if (! isRunning(recheck) && remove(command))
//执行拒绝策略
reject(command);
else if (workerCountOf(recheck) == 0)
//进入这里说明空闲核心线程数都超时退出啦
//因为任务已经放入队列了,所以此处不需要传入任务
//注意事项,网上很多说这里创建一个线程不启动这是错误的。博主亲测这里创建了一个线程并且需要启动
addWorker(null, false);
}
/*
* 如果执行到这里有两种情况:
* 线程池已经不是RUNNING状态
* 线程池是RUNNING状态,workerCount>=corePoolSize并且workQueue已满
*/
//调用addWorker(),传入false代表把线程池线程数量设置maximumPoolSize,如果添加失败则执行拒绝策略。
else if (!addWorker(command, false))
reject(command);
}
/**
*@param firstTask 表示执行的任务;
*@param core 表示限制添加线程的数量是根据corePoolSize来判断还是maximumPoolSize来判断;
* 如果为true,根据corePoolSize来判断;如果为false,则根据maximumPoolSize来判断
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
//获取线程池状态
int rs = runStateOf(c);
/**
* 只要满足下面任一条就直接返回false
* 线程池状态为STOP, TYDING 或 TERMINATD 状态
* 线程池状态为SHUTDOWN,并且firstTask != null 或者workQueue为空
*/
//这里为什么不直接判断线程池状态呢?是因为有可能在线程池状态为RUNNING时已经把任务放入队列中,放入完成以后状态变为SHUTDOWN
if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&
firstTask == null &&! workQueue.isEmpty()))
return false;
for (;;) {
//得到工作的线程数量
int wc = workerCountOf(c);
//如果工作线程数量大于理论上线程池容量;或者工作线程数大于(corePoolSize or maximumPoolSize) 直接返回false,添加失败
if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//cas修改工作线程数,工作线程数+1。如果修改失败需要重新执行;成功退出循环
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get();
//如果线程池状态变化则需要重新执行
if (runStateOf(c) != rs)
continue retry;
}
}
//worker是否已经启动
boolean workerStarted = false;
//worker是否添加成功
boolean workerAdded = false;
Worker w = null;
try {
//构建worker
w = new Worker(firstTask);
//注意,这个thread不是firstTask,是从线程工厂造出来的
final Thread t = w.thread;
if (t != null) {
//获取锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//获取线程池状态
int rs = runStateOf(ctl.get());
//如果线程池状态是RUNNING或者状态是SHUTDOWN但是队列里面还有任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
//如果t.isAlive()=true,说明是有问题的,都没有启动,t怎么会是活的呢。所以抛出异常。
if (t.isAlive())
throw new IllegalThreadStateException();
//把worker添加到set集合
workers.add(w);
//记录线程池中出现的最大线程数
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
//添加成功标识
workerAdded = true;
}
} finally {
//释放锁
mainLock.unlock();
}
//添加成功启动线程,启动线程是调用了runWorker()
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
//启动失败
if (! workerStarted)
//启动失败需要从workers中移除当前构造的woker;工作线程数减1了;执行tryTerminate()判断是否终止线程池。
addWorkerFailed(w);
}
return workerStarted;
}
final void runWorker(Worker w) {
//获取当前线程
Thread wt = Thread.currentThread();
//需要执行的任务
Runnable task = w.firstTask;
//置为null
w.firstTask = null;
//这里是为了把之前的state=-1设置为state=0,此时允许中断
w.unlock();
//是否异常退出循环
boolean completedAbruptly = true;
try {
//如果任务不为null或者getTask()不为null
while (task != null || (task = getTask()) != null) {
//获取锁。这里使用锁的目的在于标识正在处理任务
w.lock();
//线程池=SHUWDOWN,要保证当前线程是中断状态
//线程池!=SHUWDOWN,要保证当前线程不是中断状态
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//留给子类实现
beforeExecute(wt, task);
Throwable thrown = null;
try {
//执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//子类执行
afterExecute(task, thrown);
}
} finally {
task = null;
//更新任务完成数
w.completedTasks++;
w.unlock();
}
}
//没有出现异常
completedAbruptly = false;
} finally {
//一定要注意。执行到这里说明getTask()返回null。说明当前线程池中不需要那么多线程来执行任务了,可以把多于corePoolSize数量的工作线程干掉
processWorkerExit(w, completedAbruptly);
}
}
//什么情况才会执行getTask呢?说明工作线程数已经大于核心线程数才会执行getTask()。一定要记住这一点
private Runnable getTask() {
//表示上次从阻塞队列中取任务时是否超时
boolean timedOut = false;
for (;;) {
int c = ctl.get();
//获取线程池状态
int rs = runStateOf(c);
//如果线程池状态rs >= SHUTDOWN并且(rs >= STOP,或者阻塞队列为空)。则将workerCount减1并返回null。
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
//获取工作线程数
int wc = workerCountOf(c);
//表示是否需要超时控制。allowCoreThreadTimeOut默认false;如果线程池数量超过核心线程数也是需要超时控制的
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
//校验工作线程数量和任务队列是否为空
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
//工作线程数量-1
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
//根据是否超时从队列中获取任务
Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
//说明发生了中断
timedOut = false;
}
}
}
private void processWorkerExit(Worker w, boolean completedAbruptly) {
//是否异常,如果异常工作线程数量-1
if (completedAbruptly)
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//增加线程池完成任务数量
completedTaskCount += w.completedTasks;
//从worker中移除完成任务
workers.remove(w);
} finally {
mainLock.unlock();
}
//根据线程池状态进行判断是否结束线程池
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
//根据线程池状态判断是否结束线程池
final void tryTerminate() {
for (;;) {
int c = ctl.get();
//RUNNING不能结束线程池
//线程池状态是TIDYING或TERMINATED说明线程池已经处于正在终止的路上
//状态为SHUTDOWN,但是任务队列不为空不能结束线程池
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
//工作线程数量不等于0,中断一个空闲的工作线程,并返回
if (workerCountOf(c) != 0) {
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 设置线程池状态为TIDYING,如果设置成功,则调用terminated方法
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
//子类实现
terminated();
} finally {
// 设置状态为TERMINATED
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
}
}
//该方法用于给空闲工作线程一个中断标识
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//遍历worker,根据onlyOne判断,如果为ture只中断一个空闲线程
for (Worker w : workers) {
Thread t = w.thread;
//线程没有被中断并且线程是空闲状态tryLock()判断是否空闲
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
通过线程池提供的参数进行监控
getTaskCount:线程池任务总数。
getCompletedTaskCount:线程池已完成的任务数量,小于等于completedTaskCount。
getPoolSize:线程池当前的核心线程数量。
getLargestPoolSize:线程池曾经创建过的最大线程数量。
getActiveCount:当前线程池中正在执行任务的线程数量。
-END-
近期热文:
关注我
点击“阅读原文”,看本号其他精彩内容