GPIO按键属于是系统的一种设备,挂载到platform总线上,其原理请参考Android学习之platform开发流程,以下直接介绍其在imx53qsb上的应用。
Kernel-imx\arch\arm\mach-mx5\Mx53_loco.c#L690
#define GPIO_BUTTON(gpio_num, ev_code, act_low, descr, wake) \
{ \
.gpio = gpio_num, \
.type = EV_KEY, \
.code = ev_code, \
.active_low = act_low, \
.desc = "btn " descr, \
.wakeup = wake, \
}
static struct gpio_keys_button loco_buttons[] = {
GPIO_BUTTON(MX53_nONKEY, KEY_POWER, 1, "power", 0),
GPIO_BUTTON(USER_UI1, KEY_BACK, 1, "back", 0),
//GPIO_BUTTON(USER_UI2, KEY_HOME, 1, "home", 0), //edit by havery for menu key
GPIO_BUTTON(USER_UI2, KEY_HOME, 1, "menu", 0), //key 与。code有关,与。desc无关
};
static struct gpio_keys_platform_data loco_button_data = {
.buttons = loco_buttons,
.nbuttons = ARRAY_SIZE(loco_buttons),
};
static struct platform_device loco_button_device = {
.name = "gpio-keys",
.id = -1,
.num_resources = 0,
.dev = {
.platform_data = &loco_button_data,
}
};
Kernel-imx\arch\arm\mach-mx5\Mx53_loco.c#L713
static void __init loco_add_device_buttons(void)
{
platform_device_register(&loco_button_device);
}
loco_add_device_buttons()其在mxc_board_init()调用。
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L589
static struct platform_driver gpio_keys_device_driver = {
.probe = gpio_keys_probe,
.remove = __devexit_p(gpio_keys_remove),
.driver = {
.name = "gpio-keys",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &gpio_keys_pm_ops,
#endif
}
};
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L601
static int __init gpio_keys_init(void)
{
return platform_driver_register(&gpio_keys_device_driver);
}
module_init(gpio_keys_init);
platform_driver_register之后,将调用.probe函数:
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L417
static int __devinit gpio_keys_probe(struct platform_device *pdev)
{
struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
struct gpio_keys_drvdata *ddata;
struct device *dev = &pdev->dev;
struct input_dev *input;
int i, error;
int wakeup = 0;
ddata = kzalloc(sizeof(struct gpio_keys_drvdata) +
pdata->nbuttons * sizeof(struct gpio_button_data),
GFP_KERNEL);
input = input_allocate_device();
if (!ddata || !input) {
dev_err(dev, "failed to allocate state\n");
error = -ENOMEM;
goto fail1;
}
ddata->input = input;
ddata->n_buttons = pdata->nbuttons;
mutex_init(&ddata->disable_lock);
platform_set_drvdata(pdev, ddata);
input->name = pdev->name;
input->phys = "gpio-keys/input0";
input->dev.parent = &pdev->dev;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
/* Enable auto repeat feature of Linux input subsystem */
if (pdata->rep)
__set_bit(EV_REP, input->evbit);
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_keys_button *button = &pdata->buttons[i];
struct gpio_button_data *bdata = &ddata->data[i];
unsigned int type = button->type ?: EV_KEY;
bdata->input = input;
bdata->button = button;
error = gpio_keys_setup_key(pdev, bdata, button);
if (error)
goto fail2;
if (button->wakeup)
wakeup = 1;
input_set_capability(input, type, button->code);
}
error = sysfs_create_group(&pdev->dev.kobj, &gpio_keys_attr_group);
if (error) {
dev_err(dev, "Unable to export keys/switches, error: %d\n",
error);
goto fail2;
}
error = input_register_device(input);
if (error) {
dev_err(dev, "Unable to register input device, error: %d\n",
error);
goto fail3;
}
/* get current state of buttons */
for (i = 0; i < pdata->nbuttons; i++)
gpio_keys_report_event(&ddata->data[i]);
input_sync(input);
device_init_wakeup(&pdev->dev, wakeup);
return 0;
fail3:
sysfs_remove_group(&pdev->dev.kobj, &gpio_keys_attr_group);
fail2:
while (--i >= 0) {
free_irq(gpio_to_irq(pdata->buttons[i].gpio), &ddata->data[i]);
if (pdata->buttons[i].debounce_interval)
del_timer_sync(&ddata->data[i].timer);
cancel_work_sync(&ddata->data[i].work);
gpio_free(pdata->buttons[i].gpio);
}
platform_set_drvdata(pdev, NULL);
fail1:
input_free_device(input);
kfree(ddata);
return error;
}
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L359
static int __devinit gpio_keys_setup_key(struct platform_device *pdev,
struct gpio_button_data *bdata,
struct gpio_keys_button *button)
{
char *desc = button->desc ? button->desc : "gpio_keys";
struct device *dev = &pdev->dev;
unsigned long irqflags;
int irq, error;
setup_timer(&bdata->timer, gpio_keys_timer, (unsigned long)bdata);
INIT_WORK(&bdata->work, gpio_keys_work_func);
error = gpio_request(button->gpio, desc);
if (error < 0) {
dev_err(dev, "failed to request GPIO %d, error %d\n",
button->gpio, error);
goto fail2;
}
error = gpio_direction_input(button->gpio);
if (error < 0) {
dev_err(dev, "failed to configure"
" direction for GPIO %d, error %d\n",
button->gpio, error);
goto fail3;
}
irq = gpio_to_irq(button->gpio);
if (irq < 0) {
error = irq;
dev_err(dev, "Unable to get irq number for GPIO %d, error %d\n",
button->gpio, error);
goto fail3;
}
irqflags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;
/*
* If platform has specified that the button can be disabled,
* we don't want it to share the interrupt line.
*/
if (!button->can_disable)
irqflags |= IRQF_SHARED;
error = request_irq(irq, gpio_keys_isr, irqflags, desc, bdata);
if (error) {
dev_err(dev, "Unable to claim irq %d; error %d\n",
irq, error);
goto fail3;
}
return 0;
fail3:
gpio_free(button->gpio);
fail2:
return error;
}
gpio_keys_setup_key()被gpio_keys_probe()调用,用来设置GPIO中断回调函以及中断号,下面进行简要分析
Linux 提供了一个简单的 API 来构造和管理计时器。它包含一些函数(和助手函数),用于创建、取消和管理计时器。
计时器通过 timer_list 结构定义,
Kernel-imx\include\linux\Timer.h #L12
struct timer_list {
/*
* All fields that change during normal runtime grouped to the
* same cacheline
*/
struct list_head entry;
unsigned long expires;
struct tvec_base *base;
void (*function)(unsigned long);
unsigned long data;
int slack;
#ifdef CONFIG_TIMER_STATS
void *start_site;
char start_comm[16];
int start_pid;
#endif
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
该结构包括实现一个计时器所需的所有数据(其中包括列表指针和在编译时配置的可选计时器统计数据)。从用户角度看,timer_list 包含一个过期时间,一个回调函数(当/如果计时器过期),以及一个用户提供的上下文。用户必须初始化计时器,可以采取几种方法,最简单的方法是调用 setup_timer,该函数初始化计时器并设置用户提供的回调函数和上下文。或者,用户可以设置计时器中的这些值(函数和数据)并简单地调用 init_timer。注意,init_timer 由 setup_timer 内部调用。
Kernel-imx\include\linux\Timer.h #L104
#define init_timer(timer)\
init_timer_key((timer), NULL, NULL)
#define setup_timer(timer, fn, data)\
setup_timer_key((timer), NULL, NULL, (fn), (data))
本章开始高亮显示有对其的引用:
setup_timer(&bdata->timer, gpio_keys_timer, (unsigned long)bdata);
INIT_WORK(&bdata->work, gpio_keys_work_func);
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L336
static void gpio_keys_timer(unsigned long _data)
{
struct gpio_button_data *data = (struct gpio_button_data *)_data;
schedule_work(&data->work);
}
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L328
static void gpio_keys_work_func(struct work_struct *work)
{
struct gpio_button_data *bdata =
container_of(work, struct gpio_button_data, work);
gpio_keys_report_event(bdata);//检测按键并上传
}
拥有上面经过初始化的bdata->timer之后,用户现在需要设置过期时间,这通过调用 mod_timer 来完成。由于用户通常提供一个未来的过期时间,他们通常在这里添加 jiffies 来从当前时间偏移。用户也可以通过调用 del_timer 来删除一个计时器(如果它还没有过期):
Kernel-imx\kernel \Timer.c#L797
int mod_timer(struct timer_list *timer, unsigned long expires)
{
/*
* This is a common optimization triggered by the
* networking code - if the timer is re-modified
* to be the same thing then just return:
*/
if (timer_pending(timer) && timer->expires == expires)
return 1;
expires = apply_slack(timer, expires);
return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
}
EXPORT_SYMBOL(mod_timer);
Kernel-imx\kernel \Timer.c#L901
int del_timer(struct timer_list *timer)
{
struct tvec_base *base;
unsigned long flags;
int ret = 0;
timer_stats_timer_clear_start_info(timer);
if (timer_pending(timer)) {
base = lock_timer_base(timer, &flags);
if (timer_pending(timer)) {
detach_timer(timer, 1);
if (timer->expires == base->next_timer &&
!tbase_get_deferrable(timer->base))
base->next_timer = base->timer_jiffies;
ret = 1;
}
spin_unlock_irqrestore(&base->lock, flags);
}
return ret;
}
EXPORT_SYMBOL(del_timer);
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L343
static irqreturn_t gpio_keys_isr(int irq, void *dev_id)
{
struct gpio_button_data *bdata = dev_id;
struct gpio_keys_button *button = bdata->button;
BUG_ON(irq != gpio_to_irq(button->gpio));
if (button->debounce_interval)
mod_timer(&bdata->timer,
jiffies + msecs_to_jiffies(button->debounce_interval));
else
schedule_work(&bdata->work);
return IRQ_HANDLED;
}
此处调用mod_timer来设置过期时间,此时间是为了防止按键抖动的一个时间。
申请IRQ
int request_irq(unsigned int irq, void (*handler)(int irq, void *dev_id, struct pt_regs *regs), unsigned long irqflags, const char *devname, void *dev_id);
释放IRQ
void free_irq(unsigned int irq, void *dev_id);
request_irq返回0表示成功,返回-INVAL表示中断号无效或者中断处理函数为NULL。参数irq表示所要申请的中断号;handler为向系统登记的中断处理子程序,中断产生时由系统来调用;devicename为设备名,将会出现在/proc/interrupts文件里;dev_id为申请时告诉系统的设备标识;irq_flags是申请时的选项,它决定中断处理程序的一些特性,其中最重要的是中断处理程序是快速处理程序(flag里设置了SA_INTERRUPT)还是慢速处理程序(没有设置SA_INTERRUPT)。快速处理程序运行时,所有中断都被屏蔽,而慢速处理程序运行时,除了正在处理的中断外,其他中断都没有被屏蔽。在Linux系统中,中断可以被不同的中断处理程序共享,这要求每一个共享此中断的处理程序在申请中断时在flag里设置SA_SHIRQ,这些处理程序之间以dev_id来区分。如果中断由某个处理程序独占,则dev_id可以为NULL。request_irq返回0时表示成功,返回-INVAL表示irq>15或handler==NULL。
另外,还提供了一组函数帮助我们控制中断。
void disable_irq(unsigned int irq)
void enable_irq(unsigned int irq)
void synchronize_irq(unsigned int irq)
void disable_irq_nosync(unsigned int irq)
Kernel-imx\include\linux\Interrupt.h
static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
return request_threaded_irq(irq, handler, NULL, flags, name, dev);
}
Kernel-imx\kernel\irq\Manage.c
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char *devname, void *dev_id)
{
struct irqaction *action;
struct irq_desc *desc;
int retval;
/*
* Sanity-check: shared interrupts must pass in a real dev-ID,
* otherwise we'll have trouble later trying to figure out
* which interrupt is which (messes up the interrupt freeing
* logic etc).
*/
if ((irqflags & IRQF_SHARED) && !dev_id)
return -EINVAL;
desc = irq_to_desc(irq);
if (!desc)
return -EINVAL;
if (desc->status & IRQ_NOREQUEST)
return -EINVAL;
if (!handler) {
if (!thread_fn)
return -EINVAL;
handler = irq_default_primary_handler;
}
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
if (!action)
return -ENOMEM;
action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irqflags;
action->name = devname;
action->dev_id = dev_id;
chip_bus_lock(irq, desc);
retval = __setup_irq(irq, desc, action);
chip_bus_sync_unlock(irq, desc);
if (retval)
kfree(action);
#ifdef CONFIG_DEBUG_SHIRQ
if (!retval && (irqflags & IRQF_SHARED)) {
/*
* It's a shared IRQ -- the driver ought to be prepared for it
* to happen immediately, so let's make sure....
* We disable the irq to make sure that a 'real' IRQ doesn't
* run in parallel with our fake.
*/
unsigned long flags;
disable_irq(irq);
local_irq_save(flags);
handler(irq, dev_id);
local_irq_restore(flags);
enable_irq(irq);
}
#endif
return retval;
}
EXPORT_SYMBOL(request_threaded_irq);
本章开始高亮显示有对其的引用:
error = request_irq(irq, gpio_keys_isr, irqflags, desc, bdata);
Kernel-imx\drivers\input\keyboard\Gpio_keys.c#L343
static irqreturn_t gpio_keys_isr(int irq, void *dev_id)
{
struct gpio_button_data *bdata = dev_id;
struct gpio_keys_button *button = bdata->button;
BUG_ON(irq != gpio_to_irq(button->gpio));
if (button->debounce_interval)
mod_timer(&bdata->timer,
jiffies + msecs_to_jiffies(button->debounce_interval));
else
schedule_work(&bdata->work);
return IRQ_HANDLED;
}