本算法思想来自于李航的《统计学习方法》本文主要实现其kd树最近邻的搜索
构造代码已经发表过了,现在也还是写一下,
//为了方便储存数据
public class Data {
public double x1;
public double x2;
}
//kd树的代码
public class Tree {
public Tree left;//左节点
public Tree father;//父节点
public Tree right;//右节点
public Data mData;//节点的数据
public int split;//判断维数
public void setSplit(int split) {
this.split = split;
}
public int getSplit() {
return split;
}
}
//构造kd树
private static void builtTree(Tree root, Data[] datas) {
if (datas == null) return;//当没有的时候说明这个不能成为节点
if (datas.length == 1) { //只有一个就是他自己了,它和第一个判断不能换位置
root.mData = datas[0];//设置数据
return;
} else {
dataSort(datas, root.getSplit() % 2); //进行数据的排列,注意传参判断其是第几维划分
root.left = new Tree();root.left.father = root;
root.left.setSplit(root.getSplit() + 1);//不要忘记写其左右节点的维度
int middle = datas.length / 2; //进行数据的对分
root.mData = datas[middle];
Data leftData[] = new Data[middle];
for (int j = 0; j < middle; j++) {
leftData[j] = datas[j];
}
Data rightData[];
if (datas.length == 2) {
rightData = null;
} else {
root.right = new Tree();root.right.father = root;
root.right.setSplit(root.getSplit() + 1);
rightData = new Data[datas.length - 1 - middle];
for (int k = middle + 1, j = 0; k < datas.length; k++, j++) {
rightData[j] = datas[k];
}
}
builtTree(root.left, leftData); //递归
builtTree(root.right, rightData);
}
}
private static void dataSort(Data[] datas, int i) {//冒泡排序法
if (i == 0) {
for (int k = 0; k < datas.length - 1; k++) {
for (int j = 0; j < datas.length - 1 - k; j++) {
if (datas[j].x1 > datas[j + 1].x1) {
Data temp = datas[j];
datas[j] = datas[j + 1];
datas[j + 1] = temp;
}
}
}
} else {
for (int k = 0; k < datas.length - 1; k++) {
for (int j = 0; j < datas.length - 1 - k; j++) {
if (datas[j].x2 > datas[j + 1].x2) {
Data temp = datas[j];
datas[j] = datas[j + 1];
datas[j + 1] = temp;
}
}
}
}
}
//寻找叶节点
private static Tree find(Tree root, Data testData) {//查找叶节点
int s = root.split%2;
if(root.left==null)return root;
else {
if(s==0){
if(root.mData.x1>testData.x1)root = find(root.left,testData);
else root = find(root.right,testData);
}else{
if(root.mData.x2>testData.x2)root = find(root.left,testData);
else root = find(root.right,testData);
}
}
return root;
}
private static double range(Data mData, Data testData) {//计算欧式距离
double sum = (mData.x1 - testData.x1)*(mData.x1 - testData.x1)+(mData.x2 - testData.x2)*(mData.x2 - testData.x2);
return Math.sqrt(sum);
}
private static Data findmin(Tree test, Data testData) {
double minran = range(test.mData,testData);
Tree minTree = test;
Tree nowTree = test;
while(nowTree.father!=null){
int s = nowTree.split%2;
double nowran = range(nowTree.mData,testData);//判断当前节点距离,如果小于就取当前点
if(nowran