转载请注明转自: 存储系统研究, 本文固定链接:socket connect error 99(Cannot assign request address)
这是最近使用libcurl写http服务的压力测试的时候遇到的一个问题,其直接表象是客户端在发送http请求时失败,最终原因是客户端的TIME_WAIT状态的socket进程过多,导致端口被占满。下面看整个分析过程:
/* get it! */
res = curl_easy_perform(curl_handle);
long http_code = 0;
curl_easy_getinfo(curl_handle, CURLINFO_RESPONSE_CODE, &http_code);
/* cleanup curl stuff */
curl_easy_cleanup(curl_handle);
if (res != CURLE_OK || http_code != 200) {
cout << uri << ", res = " << res << ", http_code = " << http_code << endl;
}
return (res == CURLE_OK && http_code == 200);
错误日志如下:
http://10.237.92.30:8746/thumbnail/jpeg/l820/AppStore/b262b95f-95b8-4e0e-b4e0-edc3b76e3c81, res = 7, http_code = 0 http://10.237.92.30:8746/thumbnail/jpeg/l820/AppStore/a4c37951-d8b5-40ff-af27-4efcd1a58e71, res = 7, http_code = 0 http://10.237.92.30:8746/thumbnail/jpeg/l820/AppStore/abab08ff-75e1-40da-a113-053789e93686, res = 7, http_code = 0查看curllib的错误代码,如下,错误代码为CURLE_COULDNT_CONNECT
CURLE_OK = 0,
CURLE_UNSUPPORTED_PROTOCOL, /* 1 */
CURLE_FAILED_INIT, /* 2 */
CURLE_URL_MALFORMAT, /* 3 */
CURLE_NOT_BUILT_IN, /* 4 - [was obsoleted in August 2007 for
7.17.0, reused in April 2011 for 7.21.5] */
CURLE_COULDNT_RESOLVE_PROXY, /* 5 */
CURLE_COULDNT_RESOLVE_HOST, /* 6 */
CURLE_COULDNT_CONNECT, /* 7 */
CURLE_FTP_WEIRD_SERVER_REPLY, /* 8 */
CURLE_REMOTE_ACCESS_DENIED, /* 9 a service was denied by the server
if(!isconnected && (conn->socktype == SOCK_STREAM)) {
rc = connect(sockfd, &addr.sa_addr, addr.addrlen);
if(-1 == rc) {
error = SOCKERRNO;
printf("connect failed with errno = %d", errno);
}
conn->connecttime = Curl_tvnow();
if(conn->num_addr > 1)
Curl_expire(data, conn->timeoutms_per_addr);
再次运行测试程序,得到如下输出:
connect failed with errno = 99 http://127.0.0.1:8902/thumbnail/jpeg/l820/AppStore/f8913ca1- ae5f-4fcc-abc5-cbe9ada1a67d, ret_code: 0, res: 7 connect failed with errno = 99 http://127.0.0.1:8902/thumbnail/jpeg/l820/AppStore/3726a1e2- 057e-402d-b347-61c5a5136cd9, ret_code: 0, res: 7 connect failed with errno = 99 http://127.0.0.1:8902/thumbnail/jpeg/l820/AppStore/c19bad67- 6b7d-4dc6-a17a-f74ea525c32a, ret_code: 0, res: 7 connect failed with errno = 99 http://127.0.0.1:8902/thumbnail/jpeg/l820/AppStore/5d778568- d873-46a7-9651-ad8ac3810bf4, ret_code: 0, res: 7可以看到errno = 99,在内核的include/asm-generic/errno.h文件中可以查看errno = 99的解释为” Cannot assign requested address”。
#define EAFNOSUPPORT 97 /* Address family not supported by protocol */
#define EADDRINUSE 98 /* Address already in use */
#define EADDRNOTAVAIL 99 /* Cannot assign requested address */
#define ENETDOWN 100 /* Network is down */
Sys_connect---> sock->ops->connect // inet_stream_connect sk->sk_prot->connect // tcp_v4_connecttcp_v4_connect的作用主要是完成TCP连接三次握手中的第一个握手,即向服务端发送SYNC = 1和一个32位的序号的连接请求包。要发送SYNC请求包,按照TCP/IP协议,就必须有源IP地址和端口,源IP地址的选择和路由相关,需要查询路由表,在ip_route_connect中实现,源端口的选择在__inet_hash_connect中实现,而且如果找不到一个可用的端口,这个函数会返回-EADDRNOTAVAIL,因此基本上可以确定是这个函数返回错误导致connect失败;
这个函数的主要作用是选择一个可用的端口,其主要的实现步骤如下:
i. 调用inet_get_local_port_range(&low, &high);获取可用的端口链表;
*low = sysctl_local_ports.range[0];
*high = sysctl_local_ports.range[1];
ii. 对于每一个端口,进行下面的步骤:
a) 判断是否与这个要使用的端口相同,如果相同转到步骤b,如果不相同则遍历下一个entry
b) 找到这个端口,调用check_established(__inet_check_established)判断这个端口是否可以重用(TIME_WAIT状态下的端口并且net.ipv4.tcp_tw_recycle = 1是端口可以重用)
iii. 如果到最后都没有找到一个可用的端口就返回EADDRNOTAVAIL;
从这个函数的实现可以看出,主要是由于可用的端口被占满了,所以找不到一个可用的端口,导致连接失败。运行netstat可以发现确实存在很多TIME_WAIT状态的socket,这些socket将可用端口占满了。
[root@test miuistorage-dev]# netstat -n | awk '/^tcp/ {++state[$NF]} END {for(key in state)
print key,"\t",state[key]}'
TIME_WAIT 26837
ESTABLISHED 30
root@guojun8-desktop:/linux-2.6.34# sysctl net.ipv4.ip_local_port_range net.ipv4.ip_local_port_range = 32768 61000修改端口范围:
root@guojun8-desktop:linux-2.6.34# sysctl net.ipv4.ip_local_port_range="32768 62000" net.ipv4.ip_local_port_range = 32768 62000这种办法可能不能解决根本问题,因为如果使用短连接,即使增加可用端口还是会被占满的。
root@guojun8-desktop:linux-2.6.34# sysctl net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_tw_recycle = 1
root@guojun8-desktop:linux-2.6.34# sysctl net.ipv4.tcp_tw_reuse=1
net.ipv4.tcp_tw_reuse = 1
root@guojun8-desktop:linux-2.6.34# strace sysctl net.ipv4.tcp_tw_recycle=1 execve("/sbin/sysctl", ["sysctl", "net.ipv4.tcp_tw_recycle=1"], [/* 20 vars */]) = 0 brk(0) = 0x952f000 ….. open("/proc/sys/net/ipv4/tcp_tw_recycle", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3 fstat64(3, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb788e000 write(3, "1\n", 2) = 2 close(3) = 0 munmap(0xb788e000, 4096) = 0 fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 8), ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb788e000 write(1, "net.ipv4.tcp_tw_recycle = 1\n", 28net.ipv4.tcp_tw_recycle = 1 ) = 28 exit_group(0) = ?可以看到这个程序打开/proc/sys/net/ipv4/tcp_tw_recycle并向文件中写入1,但是这个设置时怎样其作用的呢?在内核中对/proc/sys目录下的文件的i_fop做了特殊的处理,在proc_sys_make_inode 中设置:inode->i_fop = &proc_sys_file_operationsproc_sys_file_operations的定义如下:
static const struct file_operations proc_sys_file_operations = {
.read = proc_sys_read,
.write = proc_sys_write,
};
proc_sys_write中会修改对应的文件,并且修改内存中的内容,不同的文件有不同的proc_handler,如tcp_tw_recycle对应的处理函数是proc_dointvec,这个函数会修改下面的变量:
tcp_death_row.sysctl_tw_recycle这个变量在内核中表示TIME_WIAT状态的socket是否可以被快速回收。