集合

集合

  • 一、集合框架的概述
    • 1.集合、数组都是对多个数据进行存储操作的结构,简称Java容器。
    • 2.1 数组在存储多个数据方面的特点:
    • 2.2 数组在存储多个数据方面的缺点:
  • 二、集合框架
  • 三、Collection接口中的方法的使用
    • List接口
      • 面试题:ArrayList、LinkedList、Vector三者的异同?
      • 1. ArrayList的源码分析:
        • 1.1 jdk 7情况下
        • 1.2 jdk 8中ArrayList的变化:
      • 2. LinkedList的源码分析:
      • 3. Vector的源码分析:
      • List接口中的常用方法
    • Set接口
      • 1.Set:存储无序的、不可重复的数据
      • 2.添加元素的过程:以HashSet为例:
      • 3.Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。
      • 4.要求:
      • 5.TreeSet
  • 四、Map接口中的方法
    • 1.Map的实现类的结构:
    • 2.Map结构的理解:
    • 3.HashMap的底层实现原理?
      • 以jdk7为例说明:
      • jdk8 相较于jdk7在底层实现方面的不同:
    • 4.LinkedHashMap的底层实现原理(了解)
    • 5.Map中定义的方法:
    • 6.TreeMap
    • 7.Properties
  • 五、Collections:操作Collection、Map的工具类

一、集合框架的概述

1.集合、数组都是对多个数据进行存储操作的结构,简称Java容器。

说明:此时的存储,主要指的是内存层面的存储,不涉及到持久化的存储(.txt,.jpg,.avi,数据库中)

2.1 数组在存储多个数据方面的特点:

1、一旦初始化以后,其长度就确定了。
2、数组一旦定义好,其元素的类型也就确定了。我们也就只能操作指定类型的数据了。比如:String[] arr;int[] arr1;Object[] arr2;

2.2 数组在存储多个数据方面的缺点:

1、一旦初始化以后,其长度就不可修改。
2、数组中提供的方法非常有限,对于添加、删除、插入数据等操作,非常不便,同时效率不高。
3、获取数组中实际元素的个数的需求,数组没有现成的属性或方法可用
4、数组存储数据的特点:有序、可重复。对于无序、不可重复的需求,不能满足。

二、集合框架

  • |----Collection接口:单列集合,用来存储一个一个的对象
    • |----List接口:存储有序的、可重复的数据。 -->“动态”数组
      • |----ArrayList、LinkedList、Vector
    • |----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”
      • |----HashSet、LinkedHashSet、TreeSet
  • |----Map接口:双列集合,用来存储一对(key - value)一对的数据 -->高中函数:y = f(x)
    • |----HashMap、LinkedHashMap、TreeMap、Hashtable、Properties

三、Collection接口中的方法的使用

public class CollectionTest {
    @Test
    public void test1(){
        Collection coll = new ArrayList();
        //add(Object e):将元素e添加到集合coll中
        coll.add("AA");
        coll.add("BB");
        coll.add(123);//自动装箱
        coll.add(new Date());
        //size():获取添加的元素的个数
        System.out.println(coll.size());//4
        //addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add("CC");
        coll.addAll(coll1);
        System.out.println(coll.size());//6
        System.out.println(coll);
        //clear():清空集合元素
        coll.clear();
        //isEmpty():判断当前集合是否为空
        System.out.println(coll.isEmpty());
    }
}

向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals()

public class Person {
    private String name;
    private int age;
    public Person() {
    }
    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }
    public String getName() {
        return name;
    }
    public void setName(String name) {
        this.name = name;
    }
    public int getAge() {
        return age;
    }
    public void setAge(int age) {
        this.age = age;
    }
    @Override
    public String toString() {
        return "Person{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }
    @Override
    public boolean equals(Object o) {
        System.out.println("Person equals()....");
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Person person = (Person) o;
        return age == person.age &&
                Objects.equals(name, person.name);
    }
}
	@Test
    public void test2(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
//        Person p = new Person("Jerry",20);
//        coll.add(p);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        //1.contains(Object obj):判断当前集合中是否包含obj
        //我们在判断时会调用obj对象所在类的equals()。
        boolean contains = coll.contains(123);
        System.out.println(contains);
        System.out.println(coll.contains(new String("Tom")));
//        System.out.println(coll.contains(p));//true
        System.out.println(coll.contains(new Person("Jerry",20)));//false -->true

        //2.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
        Collection coll1 = Arrays.asList(123,4567);
        System.out.println(coll.containsAll(coll1));
    }
	@Test
    public void test3(){
        //3.remove(Object obj):从当前集合中移除obj元素。
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        coll.remove(1234);
        System.out.println(coll);
        coll.remove(new Person("Jerry",20));
        System.out.println(coll);
        //4. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
        Collection coll1 = Arrays.asList(123,456);
        coll.removeAll(coll1);
        System.out.println(coll);
    }
	@Test
    public void test4(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        //5.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
//        Collection coll1 = Arrays.asList(123,456,789);
//        coll.retainAll(coll1);
//        System.out.println(coll);
        //6.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add(123);
        coll1.add(new Person("Jerry",20));
        coll1.add(new String("Tom"));
        coll1.add(false);
        System.out.println(coll.equals(coll1));
    }
	@Test
    public void test5(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        //7.hashCode():返回当前对象的哈希值
        System.out.println(coll.hashCode());
        //8.集合 --->数组:toArray()
        Object[] arr = coll.toArray();
        for(int i = 0;i < arr.length;i++){
            System.out.println(arr[i]);
        }
        //拓展:数组 --->集合:调用Arrays类的静态方法asList()
        List<String> list = Arrays.asList(new String[]{"AA", "BB", "CC"});
        System.out.println(list);
        List arr1 = Arrays.asList(new int[]{123, 456});
        System.out.println(arr1.size());//1
        List arr2 = Arrays.asList(new Integer[]{123, 456});
        System.out.println(arr2.size());//2
        //9.iterator():返回Iterator接口的实例,用于遍历集合元素。放在IteratorTest.java中测试
    }

集合元素的遍历操作,使用迭代器Iterator接口
1.内部的方法:hasNext() 和 next()
2.集合对象每次调用iterator()方法都得到一个全新的迭代器对象,
默认游标都在集合的第一个元素之前。
3.内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove()

public class IteratorTest {
    @Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        
        Iterator iterator = coll.iterator();
        hasNext():判断是否还有下一个元素
        while(iterator.hasNext()){
            //next():①指针下移 ②将下移以后集合位置上的元素返回
            System.out.println(iterator.next());
        }

    }
    //测试Iterator中的remove()
    //如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,
    // 再调用remove都会报IllegalStateException。
    @Test
    public void test2(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);
        //删除集合中"Tom"
        Iterator iterator = coll.iterator();
        while (iterator.hasNext()){
//            iterator.remove();
            Object obj = iterator.next();
            if("Tom".equals(obj)){
                iterator.remove();
//                iterator.remove();
            }
        }
        //遍历集合
        iterator = coll.iterator();
        while (iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }
}

jdk 5.0 新增了foreach循环,用于遍历集合、数组

public class ForTest {
    @Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //for(集合元素的类型 局部变量 : 集合对象)
        //内部仍然调用了迭代器。
        for(Object obj : coll){
            System.out.println(obj);
        }
    }
    
    @Test
    public void test2(){
        int[] arr = new int[]{1,2,3,4,5,6};
        //for(数组元素的类型 局部变量 : 数组对象)
        for(int i : arr){
            System.out.println(i);
        }
    }
}

List接口

面试题:ArrayList、LinkedList、Vector三者的异同?

相同:三个类都是实现了List接口,存储数据的特点相同:存储有序的、可重复的数据
不同:1、ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储
2、LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储
3、Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储

1. ArrayList的源码分析:

1.1 jdk 7情况下

ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData
list.add(123);//elementData[0] = new Integer(123);

list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。
默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。

结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int capacity)

1.2 jdk 8中ArrayList的变化:

ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组
list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]

后续的添加和扩容操作与jdk 7 无异。

小结:jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。

2. LinkedList的源码分析:

LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null
list.add(123);//将123封装到Node中,创建了Node对象。
其中,Node定义为:体现了LinkedList的双向链表的说法

   private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;
        Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
        }
  }

3. Vector的源码分析:

jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。在扩容方面,默认扩容为原来的数组长度的2倍。

List接口中的常用方法

	@Test
    public void test1(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);
        System.out.println(list);
        //void add(int index, Object ele):在index位置插入ele元素
        list.add(1,"BB");
        System.out.println(list);
        //boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
        List list1 = Arrays.asList(1, 2, 3);
        list.addAll(list1);
//        list.add(list1);
        System.out.println(list.size());//9
        //Object get(int index):获取指定index位置的元素
        System.out.println(list.get(0));
    }
	@Test
    public void test2(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);
        //int indexOf(Object obj):返回obj在集合中首次出现的位置。如果不存在,返回-1.
        int index = list.indexOf(4567);
        System.out.println(index);
        //int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置。如果不存在,返回-1.
        System.out.println(list.lastIndexOf(456));
        //Object remove(int index):移除指定index位置的元素,并返回此元素
        Object obj = list.remove(0);
        System.out.println(obj);
        System.out.println(list);
        //Object set(int index, Object ele):设置指定index位置的元素为ele
        list.set(1,"CC");
        System.out.println(list);
        //List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间的子集合
        List subList = list.subList(2, 4);
        System.out.println(subList);
        System.out.println(list);
    }

Set接口

HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历,优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet。
TreeSet:可以按照添加对象的指定属性,进行排序。

1.Set:存储无序的、不可重复的数据

以HashSet为例说明:
1.无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。
2.不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。

2.添加元素的过程:以HashSet为例:

我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
数组此位置上是否已经有元素:
    如果此位置上没有其他元素,则元素a添加成功。 --->情况1
    如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
        如果hash值不相同,则元素a添加成功。--->情况2
        如果hash值相同,进而需要调用元素a所在类的equals()方法:
               equals()返回true,元素a添加失败
               equals()返回false,则元素a添加成功。--->情况2
对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
jdk 7 :元素a放到数组中,指向原来的元素。
jdk 8 :原来的元素在数组中,指向元素a
总结:七上八下
HashSet底层:数组+链表的结构。

3.Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。

	@Test
    public void test1(){
        Set set = new HashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);
        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个数据和后一个数据。

	@Test
    public void test2(){
        Set set = new LinkedHashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);
        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

4.要求:

1、向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
2、重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码
重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。

5.TreeSet

1.向TreeSet中添加的数据,要求是相同类的对象。
2.两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)
3.自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().
4.定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().

	@Test
    public void test1(){
        TreeSet set = new TreeSet();
        //失败:不能添加不同类的对象
//        set.add(123);
//        set.add(456);
//        set.add("AA");
//        set.add(new User("Tom",12));
        //举例一:
//        set.add(34);
//        set.add(-34);
//        set.add(43);
//        set.add(11);
//        set.add(8);
        //举例二:
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));
        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }
	@Test
    public void test2(){
        Comparator com = new Comparator() {
            //按照年龄从小到大排列
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }else{
                    throw new RuntimeException("输入的数据类型不匹配");
                }
            }
        };
        TreeSet set = new TreeSet(com);
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Mary",33));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));
        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

四、Map接口中的方法

1.Map的实现类的结构:

  • HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
    • LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。
      原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。对于频繁的遍历操作,此类执行效率高于HashMap。
  • TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序,底层使用红黑树
  • Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
    • Properties:常用来处理配置文件。key和value都是String类型

2.Map结构的理解:

1.Map中的key:无序的、不可重复的,使用Set存储所有的key —> key所在的类要重写equals()和hashCode() (以HashMap为例)
2.Map中的value:无序的、可重复的,使用Collection存储所有的value —>value所在的类要重写equals()。一个键值对:key-value构成了一个Entry对象。
3.Map中的entry:无序的、不可重复的,使用Set存储所有的entry

3.HashMap的底层实现原理?

以jdk7为例说明:

HashMap map = new HashMap():
在实例化以后,底层创建了长度是16的一维数组Entry[] table。
…可能已经执行过多次put…
map.put(key1,value1):
首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。

  • 如果此位置上的数据为空,此时的key1-value1添加成功。 ----情况1
  • 如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据
    的哈希值:
    • 如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。----情况2
    • 如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较:
      • 如果equals()返回false:此时key1-value1添加成功。----情况3
      • 如果equals()返回true:使用value1替换value2。

补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。
在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。

jdk8 相较于jdk7在底层实现方面的不同:

  1. new HashMap():底层没有创建一个长度为16的数组
  2. jdk 8底层的数组是:Node[],而非Entry[]
  3. 首次调用put()方法时,底层创建长度为16的数组
  4. jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
    4.1.形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素)
    4.2.当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。

DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75
threshold:扩容的临界值,=容量*填充因子:16 * 0.75 => 12
TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64

4.LinkedHashMap的底层实现原理(了解)

源码中:
static class Entry extends HashMap.Node {
     Entry before, after;//能够记录添加的元素的先后顺序
     Entry(int hash, K key, V value, Node next) {
        super(hash, key, value, next);
     }
 }

5.Map中定义的方法:

添加:put(Object key,Object value)
删除:remove(Object key)
修改:put(Object key,Object value)
查询:get(Object key)
长度:size()
遍历:keySet() / values() / entrySet()

	@Test
    public void test1(){
        Map map = new HashMap();
        //添加
        map.put("AA",123);
        map.put(45,123);
        map.put("BB",56);
        //修改
        map.put("AA",87);
        System.out.println(map);

        Map map1 = new HashMap();
        map1.put("CC",123);
        map1.put("DD",123);
        map.putAll(map1);
        System.out.println(map);

        //remove(Object key)
        Object value = map.remove("CC");
        System.out.println(value);
        System.out.println(map);

        //clear()
        map.clear();//与map = null操作不同
        System.out.println(map.size());
        System.out.println(map);
    }
	@Test
    public void test2(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,123);
        map.put("BB",56);
        // Object get(Object key)
        System.out.println(map.get(45));
        //containsKey(Object key)
        boolean isExist = map.containsKey("BB");
        System.out.println(isExist);

        isExist = map.containsValue(123);
        System.out.println(isExist);

        map.clear();
        System.out.println(map.isEmpty());
    }
	@Test
    public void test5(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,1234);
        map.put("BB",56);

        //遍历所有的key集:keySet()
        Set set = map.keySet();
            Iterator iterator = set.iterator();
            while(iterator.hasNext()){
                System.out.println(iterator.next());
        }
        System.out.println();
        //遍历所有的value集:values()
        Collection values = map.values();
        for(Object obj : values){
            System.out.println(obj);
        }
        System.out.println();
        //遍历所有的key-value
        //方式一:entrySet()
        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            //entrySet集合中的元素都是entry
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());
        }
        System.out.println();
        //方式二:
        Set keySet = map.keySet();
        Iterator iterator2 = keySet.iterator();
        while(iterator2.hasNext()){
            Object key = iterator2.next();
            Object value = map.get(key);
            System.out.println(key + "=====" + value);
        }
    }

6.TreeMap

1.向TreeMap中添加key-value,要求key必须是由同一个类创建的对象
2.因为要按照key进行排序:自然排序 、定制排序

	//自然排序
	@Test
	public void test1(){
	    TreeMap map = new TreeMap();
	    User u1 = new User("Tom",23);
	    User u2 = new User("Jerry",32);
	    User u3 = new User("Jack",20);
	    User u4 = new User("Rose",18);
	    map.put(u1,98);
	    map.put(u2,89);
	    map.put(u3,76);
	    map.put(u4,100);
	    Set entrySet = map.entrySet();
	    Iterator iterator1 = entrySet.iterator();
	    while (iterator1.hasNext()){
	        Object obj = iterator1.next();
	        Map.Entry entry = (Map.Entry) obj;
	        System.out.println(entry.getKey() + "---->" + entry.getValue());
	    }
	}
	//定制排序
    @Test
    public void test2(){
        TreeMap map = new TreeMap(new Comparator() {
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }
                throw new RuntimeException("输入的类型不匹配!");
            }
        });
        User u1 = new User("Tom",23);
        User u2 = new User("Jerry",32);
        User u3 = new User("Jack",20);
        User u4 = new User("Rose",18);

        map.put(u1,98);
        map.put(u2,89);
        map.put(u3,76);
        map.put(u4,100);

        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());
        }
    }

7.Properties

在这里插入图片描述

public class PropertiesTest {
    //Properties:常用来处理配置文件。key和value都是String类型
    public static void main(String[] args)  {
        FileInputStream fis = null;
        try {
            Properties pros = new Properties();

            fis = new FileInputStream("jdbc.properties");
            pros.load(fis);//加载流对应的文件

            String name = pros.getProperty("name");
            String password = pros.getProperty("password");

            System.out.println("name = " + name + ", password = " + password);
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if(fis != null){
                try {
                    fis.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}

五、Collections:操作Collection、Map的工具类

public class CollectionsTest {

/*
reverse(List):反转 List 中元素的顺序
shuffle(List):对 List 集合元素进行随机排序
sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换

Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
Object min(Collection)
Object min(Collection,Comparator)
int frequency(Collection,Object):返回指定集合中指定元素的出现次数
void copy(List dest,List src):将src中的内容复制到dest中
boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值

 */
    @Test
    public void test2(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(-97);
        list.add(0);

        //报异常:IndexOutOfBoundsException("Source does not fit in dest")
//        List dest = new ArrayList();
//        Collections.copy(dest,list);
        //正确的:
        List dest = Arrays.asList(new Object[list.size()]);
        System.out.println(dest.size());//list.size();
        Collections.copy(dest,list);

        System.out.println(dest);
        
        /*
        Collections 类中提供了多个 synchronizedXxx() 方法,
        该方法可使将指定集合包装成线程同步的集合,从而可以解决
        多线程并发访问集合时的线程安全问题

         */
        //返回的list1即为线程安全的List
        List list1 = Collections.synchronizedList(list);
    }

    @Test
    public void test1(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(765);
        list.add(765);
        list.add(-97);
        list.add(0);

        System.out.println(list);

//        Collections.reverse(list);
//        Collections.shuffle(list);
//        Collections.sort(list);
//        Collections.swap(list,1,2);
        int frequency = Collections.frequency(list, 123);

        System.out.println(list);
        System.out.println(frequency);
    }
}

你可能感兴趣的:(Java高级编程)