多维正态分布的边缘概率与条件概率的公式(只有结论,无推导)

X X X为服从多维正态分布的随机变量,即 X ∼ N ( μ , Σ ) X\sim N(\mu,\Sigma) XN(μ,Σ)
X X X分成两个部分: X a , X b X_a,X_b Xa,Xb μ \mu μ分成两个部分: μ a , μ b \mu_a, \mu_b μa,μb Σ \Sigma Σ分成四个部分: Σ a a , Σ a b , Σ b a , Σ b b \Sigma_{aa},\Sigma_{ab},\Sigma_{ba},\Sigma_{bb} Σaa,Σab,Σba,Σbb
目标:求解 P ( X a ) P(X_a) P(Xa) P ( X b ∣ X a ) P(X_b|X_a) P(XbXa)
定理:
已知 X ∼ N ( μ , Σ ) X\sim N(\mu, \Sigma) XN(μ,Σ) Y = A X + B Y=AX+B Y=AX+B
Y ∼ N ( A μ + B , A Σ A T ) Y\sim N(A\mu +B, A\Sigma A^T) YN(Aμ+B,AΣAT)

结论:
X a ∼ N ( μ a , Σ a a ) X_a\sim N(\mu_a,\Sigma_{aa}) XaN(μa,Σaa)
令:
X b ⋅ a = X b − Σ b a Σ a a − 1 X a X_{b\cdot a}=X_b-\Sigma_{ba}\Sigma_{aa}^{-1}X_a Xba=XbΣbaΣaa1Xa
μ b ⋅ a = μ b − Σ b a Σ a a − 1 μ a \mu_{b\cdot a}=\mu_b-\Sigma_{ba}\Sigma_{aa}^{-1}\mu_a μba=μbΣbaΣaa1μa
Σ b b ⋅ a = Σ b b − Σ b a Σ a a − 1 Σ a b \Sigma_{bb\cdot a}=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab} Σbba=ΣbbΣbaΣaa1Σab
结论:
X b ∣ X a ∼ N ( μ b ⋅ a + Σ b a Σ a a − 1 X a , Σ b b ⋅ a ) X_b|X_a\sim N(\mu_{b\cdot a}+\Sigma_{ba}\Sigma_{aa}^{-1}X_a,\Sigma_{bb\cdot a}) XbXaN(μba+ΣbaΣaa1Xa,Σbba)

你可能感兴趣的:(多维正态分布的边缘概率与条件概率的公式(只有结论,无推导))