正态分布 概率密度函数PDF

概率密度函数,这种方法能够表示随机变量每个取值有多大的可能性

概率密度函数

四个不同参数集的概率密度函数(绿色线代表标准正态分布)

正态分布的概率密度函数均值为μ 方差为σ2 (或标准差σ)是高斯函数的一个实例:

f(x;\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}} \, \exp \left( -\frac{(x- \mu)^2}{2\sigma^2} \right)

(请看指数函数以及π.)

如果一个随机变量X服从这个分布,我们写作 X ~ N(μ,σ2). 如果μ = 0并且σ = 1,这个分布被称为标准正态分布,这个分布能够简化为

f(x) = \frac{1}{\sqrt{2\pi}} \, \exp\left(-\frac{x^2}{2} \right)

右边是给出了不同参数的正态分布的函数图。

正态分布中一些值得注意的量:

  • 密度函数关于平均值对称
  • 平均值是它的众数(statistical mode)以及中位数(median)
  • 函数曲线下68.268949%的面积在平均值左右的一个标准差范围内
  • 95.449974%的面积在平均值左右两个标准差的范围内
  • 99.730020%的面积在平均值左右三个标准差的范围内
  • 99.993666%的面积在平均值左右四个标准差的范围内
  • 反曲点(inflection point)在离平均值的距离为标准差之处

累积分布函数

上图所示的概率密度函数的累积分布函数

累积分布函数是指随机变量X小于或等于x的概率,用密度函数表示为

F(x;\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^x \exp \left( -\frac{(x - \mu)^2}{2\sigma^2}\ \right)\, dx.

正态分布的累积分布函数能够由一个叫做误差函数的特殊函数表示:

\Phi(z)=\frac12 \left[1 + \mathrm{erf}\,(\frac{z-\mu}{\sigma\sqrt2})\right] .

标准正态分布的累积分布函数习惯上记为Φ,它仅仅是指μ = 0σ = 1时的值,

\Phi(x)=F(x;0,1)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x\exp\left(-\frac{x^2}{2}\right)\, dx.

将一般正态分布用误差函数表示的公式简化,可得:

\Phi(z)=\frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{z}{\sqrt{2}} \right) \right].

它的反函数被称为反误差函数,为:

\Phi^{-1}(p)=\sqrt2\;\operatorname{erf}^{-1} \left(2p - 1 \right).

该分位数函数有时也被称为probit函数。probit函数已被证明没有初等原函数。

正态分布的分布函数Φ(x)没有解析表达式,它的值可以通过数值积分、泰勒级数或者渐进序列近似得到。

性质

正态分布的一些性质:

  1. 如果X \sim N(\mu, \sigma^2) \,ab是实数,那么aX + bN(aμ + b,(aσ)2) (参见期望值和方差).
  2. 如果X \sim N(\mu_X, \sigma^2_X)Y \sim N(\mu_Y, \sigma^2_Y)是统计独立的正态随机变量,那么:
    • 它们的和也满足正态分布U = X + Y \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y) (proof).
    • 它们的差也满足正态分布V = X - Y \sim N(\mu_X - \mu_Y, \sigma^2_X + \sigma^2_Y).
    • UV两者是相互独立的。
  3. 如果X \sim N(0, \sigma^2_X)Y \sim N(0, \sigma^2_Y)是独立正态随机变量,那么:
    • 它们的积XY服从概率密度函数为p的分布
      p(z) = \frac{1}{\pi\,\sigma_X\,\sigma_Y} \; K_0\left(\frac{|z|}{\sigma_X\,\sigma_Y}\right),其中K0是贝塞尔函数(modified Bessel function)
    • 它们的比符合柯西分布,满足X / Y∼Cauchy(0,σX / σY).
  4. 如果X_1, \cdots, X_n为独立标准正态随机变量,那么X_1^2 + \cdots + X_n^2服从自由度为n的卡方分布。

你可能感兴趣的:(一些小知识)