相机标定指建立相机图像像素位置与场景点位置之间的关系,根据相机成像模型,由特征点在图像中坐标与世界坐标的对应关系,求解相机模型的参数。相机需要标定的模型参数包括内部参数和外部参数。
针孔相机成像原理其实就是利用投影将真实的三维世界坐标转换到二维的相机坐标上去,其模型示意图如下图所示:
从图中我们可以看出,在世界坐标中的一条直线上的点在相机上只呈现出了一个点,其中发生了非常大的变化,同时也损失和很多重要的信息,这正是我们3D重建、目标检测与识别领域的重点和难点。实际中,镜头并非理想的透视成像,带有不同程度的畸变。理论上镜头的畸变包括径向畸变和切向畸变,切向畸变影响较小,通常只考虑径向畸变。
径向畸变:径向畸变主要由镜头径向曲率产生(光线在远离透镜中心的地方比靠近中心的地方更加弯曲)。导致真实成像点向内或向外偏离理想成像点。
[R|t]为外参矩阵,R是描述照相机方向的旋转矩阵,t是描述照相机中心位置的三维平移向量。
张正友标定法利用黑白棋盘格标定板,在得到一张标定板的图像之后,用Harris角点检测算法得到每一个角点的像素坐标 (u,v) 。张正友标定法将世界坐标系固定于棋盘格上,则棋盘格上任一点的物理坐标W=0,由于标定板的世界坐标系是人为事先定义好的,标定板上每一个格子的大小是已知的,我们可以计算得到每一个角点在世界坐标系下的物理坐标(U,V,W=0) 。我们将利用这些信息:每一个角点的像素坐标 、每一个角点在世界坐标系下的物理坐标,来进行相机的标定,获得相机的内外参矩阵、畸变参数。
1.打印一张棋盘格A4纸张(黑白间距已知),并贴在一个平板上
2.针对棋盘格拍摄若干张图片(一般10-20张)
3.在图片中检测特征点(Harris角点)
4.根据角点位置信息及图像中的坐标,求解Homographic矩阵
5.利用解析解估算方法计算出5个内部参数,以及6个外部参数
6.根据极大似然估计策略,设计优化目标并实现参数的refinement
1.实验数据
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import glob
import re
def calib(inter_corner_shape, size_per_grid, img_dir, img_type):
# criteria: only for subpix calibration, which is not used here.
# criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
w, h = inter_corner_shape
# cp_int: corner point in int form, save the coordinate of corner points in world sapce in 'int' form
# like (0,0,0), (1,0,0), (2,0,0) ....,(10,7,0).
cp_int = np.zeros((w * h, 3), np.float32)
cp_int[:, :2] = np.mgrid[0:w, 0:h].T.reshape(-1, 2)
# cp_world: corner point in world space, save the coordinate of corner points in world space.
cp_world = cp_int * size_per_grid
obj_points = [] # the points in world space
img_points = [] # the points in image space (relevant to obj_points)
images = glob.glob(img_dir + os.sep + '**.' + img_type)
for fname in images:
# print(re.sub("\D", "", fname))
img = cv2.imread(fname)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# find the corners, cp_img: corner points in pixel space.
ret, cp_img = cv2.findChessboardCorners(gray_img, (w, h), None)
# if ret is True, save.
if ret == True:
# cv2.cornerSubPix(gray_img,cp_img,(11,11),(-1,-1),criteria)
obj_points.append(cp_world)
img_points.append(cp_img)
# view the corners
cv2.drawChessboardCorners(img, (w, h), cp_img, ret)
cv2.imwrite('D:\\ComputerVision_code\\save_img\\' + re.sub("\D", "", fname) + '.jpg', img)
# cv2.waitKey(1000)
# cv2.destroyAllWindows()
# calibrate the camera
ret, mat_inter, coff_dis, v_rot, v_trans = cv2.calibrateCamera(obj_points, img_points, gray_img.shape[::-1], None,
None)
print(("ret:"), ret)
print(("internal matrix:\n"), mat_inter)
# in the form of (k_1,k_2,p_1,p_2,k_3)
print(("distortion cofficients:\n"), coff_dis)
print(("rotation vectors:\n"), v_rot)
print(("translation vectors:\n"), v_trans)
# calculate the error of reproject
total_error = 0
for i in range(len(obj_points)):
img_points_repro, _ = cv2.projectPoints(obj_points[i], v_rot[i], v_trans[i], mat_inter, coff_dis)
error = cv2.norm(img_points[i], img_points_repro, cv2.NORM_L2) / len(img_points_repro)
total_error += error
print(("Average Error of Reproject: "), total_error / len(obj_points))
return mat_inter, coff_dis
def dedistortion(inter_corner_shape, img_dir, img_type, save_dir, mat_inter, coff_dis):
w, h = inter_corner_shape
images = glob.glob(img_dir + os.sep + '**.' + img_type)
for fname in images:
img_name = fname.split(os.sep)[-1]
img = cv2.imread(fname)
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mat_inter, coff_dis, (w, h), 0, (w, h)) # 自由比例参数
dst = cv2.undistort(img, mat_inter, coff_dis, None, newcameramtx)
# clip the image
# x,y,w,h = roi
# dst = dst[y:y+h, x:x+w]
cv2.imwrite(save_dir + os.sep + img_name, dst)
print('Dedistorted images have been saved to: %s successfully.' % save_dir)
if __name__ == '__main__':
inter_corner_shape = (7, 5)
size_per_grid = 0.038
img_dir = "D:\\ComputerVision_code\\img_"
img_type = "jpg"
# calibrate the camera
mat_inter, coff_dis = calib(inter_corner_shape, size_per_grid, img_dir, img_type)
# dedistort and save the dedistortion result.
save_dir = "D:\\ComputerVision_code\\save_dedistortion"
if (not os.path.exists(save_dir)):
os.makedirs(save_dir)
dedistortion(inter_corner_shape, img_dir, img_type, save_dir, mat_inter, coff_dis)
参考:
1.https://blog.csdn.net/weixin_45617915/article/details/105360372
2.https://blog.csdn.net/qq_41784565/article/details/105362491
3.https://blog.csdn.net/JennyBi/article/details/85764988