- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- 【PaddleOCR】OCR文本检测与文本识别数据集整理,持续更新......
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 说话人识别python_基于各种分类算法的说话人识别(年龄段识别)
weixin_39673184
说话人识别python
基于各种分类算法的语音分类(年龄段识别)概述实习期间作为帮手打杂进行了一段时间的语音识别研究,内容是基于各种分类算法的语音的年龄段识别,总结一下大致框架,基本思想是:获取语料库TIMIT提取数据特征,进行处理MFCC/i-vectorLDA/PLDA/PCA语料提取,基于分类算法进行分类SVM/SVR/GMM/GBDT...用到的工具有HTK(C,shell)/Kaldi(C++,shell)/L
- QML与C++交互之创建自定义对象
在qml中,我们一般都是希望使用qml做界面展示,而数据处理转由c++处理;在此篇博客,将介绍如何在c++中给qml定义全局对象;在c++中如何定义对象给qml使用。1给qml定义全局对象正常我们定义了一个qml项目后,main函数是这样的:#include#include#includeintmain(intargc,char*argv[]){QCoreApplication::setAttri
- 使用 C++ 实现 MFCC 特征提取与说话人识别系统
whoarethenext
c++开发语言mfcc语音识别
使用C++实现MFCC特征提取与说话人识别系统在音频处理和人工智能领域,C++凭借其卓越的性能和对硬件的底层控制能力,在实时音频分析、嵌入式设备和高性能计算场景中占据着不可或缺的地位。本文将引导你了解如何使用C++库计算核心的音频特征——梅尔频率倒谱系数(MFCCs),并进一步利用这些特征构建一个说话人识别(声纹识别)系统。Part1:在C/C++中计算MFCCs直接从零开始实现MFCC的所有计算
- 深入解析C++中 std::sort背后的实现原理 —Introsort(Introspective Sort)
点云SLAM
C++c++算法数据结构快速排序排序算法堆排序深度优先
Introsort简介Introsort是一种混合排序算法,结合了三种经典算法的优点:算法用于特点快速排序通常情况平均时间复杂度O(nlogn)堆排序当快速排序退化(递归过深)时最坏时间复杂度O(nlogn)插入排序小规模数组时(如长度≤16)常数开销小,快Introsort运行机制排序逻辑如下:if(size2*log2(n))堆排序(HeapSort)else快速排序(QuickSort)快速
- 冒泡排序算法详解(含Python代码实现)
算法_小学生
算法
冒泡排序(BubbleSort)是最基础的排序算法之一,通常用于学习排序算法的入门理解。本文将通过Python代码实现冒泡排序,并详细讲解其原理、执行流程、复杂度分析及适用情况。✨一、算法简介冒泡排序的核心思想是:相邻两个元素比较,将较大的元素不断“冒泡”至右侧,最终实现排序。其基本过程是重复比较相邻的元素,如果顺序错误就交换,重复这一过程,直到没有任何需要交换的为止。二、Python代码实现下面
- ImportError: /nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4
爱编程的喵喵
Python基础课程pythonImportErrortorchnvJitLink解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:/home/
- CppCon 2015 学习:Beyond Sanitizers
虾球xz
CppCon学习c++开发语言
Sanitizers,一类基于编译时插桩(instrumentation)的动态测试工具,用来检测程序运行时的各种错误。Sanitizers简介基于编译时插桩:编译器在编译代码时自动插入检测代码。动态运行时检测:程序运行时实时检查错误。常见类型:ASan(AddressSanitizer):检测内存相关错误,如越界访问、使用后释放(Use-After-Free)、内存泄漏等。UBSan(Undef
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- error -- unsupported GNU version gcc later than 10 are not supported;(gcc、g++)
众人(某音、某书同名)
服务器linux运维
服务器跑dit时编译flash-atten以及pytorch的cuda版本检查出错,分别报错题目以及如下:想了下是系统找不到编译器subprocess.CalledProcessError:Command'['which','c++']'returnednon-zeroexitstatus1.备案,以后有人要用12我还得换回来方案一:更改gcc和gcc+的版本没有合适的版本的话需要root权限指定
- 【华为od刷题(C++)】HJ33 整数与IP地址间的转换
m0_64866459
华为odc++链表
我的代码:#include//这个头文件提供了输入输出流的功能,使得我们能够使用cin和cout来进行输入输出usingnamespacestd;//可以直接使用标准命名空间std中的功能//比如cout和cin,而不需要每次都写出std::intmain(){longlonginta,b,c,d;//a,b,c,d:这四个变量用来存储IP地址的四个部分//分别代表IP地址中的四个字节longlo
- Simscape入门教程
微小冷
机器人Matlabsimulinksimscape弹簧阻尼multibody
文章目录物理网络连接到Simulink运行本文是官方教程构造物理模型的基本步骤的学习笔记,旨在建立一个带有控制器的质量-弹簧-阻尼系统。物理网络在命令行中输入sscnew,即可弹出Simscape模板,基于此模板即可组建其相应的物理网络。通过添加新模块、删除无关模块,连接其物理网络如下所有模块均在Simscape->FoundationLibrary->Mechanical中,具体包括需要的模块包
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 大模型RLHF强化学习笔记(二):强化学习基础梳理Part2
Gravity!
大模型笔记大模型LLM强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.4强化学习分类根据数据来源划分Online:智能体与环境实时交互,如Q-Learning、SARSA、Actor-CriticOffline:智能体使用预先收集的数据集进行学习根据策略更新划分On-Policy:学习和行为策略是相同的,数据是按照当前策略生成的,如SARSAOff-Policy:学习策
- 了解GC吗?什么是GC?
后端java
GC是什么?为什么要GC?GC(GarbageCollection),垃圾回收,是Java与C++的主要区别之一。作为Java开发者,一般不需要专门编写内存回收和垃圾清理代码。这是因为在Java虚拟机中,存在自动内存管理和垃圾清理机制。对JVM中的内存进行标记,并确定哪些内存需要回收,根据一定的回收策略,自动的回收内存,保证JVM中的内存空间,防止出现内存泄露和溢出问题。GC是任意时候都能进行的吗
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- xml文件笔记
今天学习了一下xml下面是总结的一些笔记Xml可以用来配置文件xml特点:Xml可以从HTYML中分离数据可以利用xml文件在不兼容的系统之间交换数据Xml数据以纯文本格式存储Xml与其他软硬件的耦合度更低,数据可以被更多的设备利用,还可以将XML文件当作数据源来处理,就像操作数据库一样Xml的格式在xml文件头部要有声明在XML中字母的大小写是敏感的Xml文件中有且只有一个根元素,所有的其他元素
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费传递是通过**消费者(Consumer)和消费者组(ConsumerGroup)**的机制来实现的。以下是Kafka消息消费传递的详细过程:1.Kafka的基本结构Kafka由生产者(Producer)、消费者
- 《力扣》链表 | 19. 删除链表的倒数第 N 个结点 C++题解
一只一只
算法数据结构链表c++leetcode
19.删除链表的倒数第N个结点-力扣(LeetCode)给你一个链表,删除链表的倒数第n个结点,并且返回链表的头结点。示例1:输入:head=[1,2,3,4,5],n=2输出:[1,2,3,5]好神奇的解法,有股相对运动的赶脚双指针:a,b(同时指向头节点)1.先让a指针移动n个节点2.然后a,b一起移动,当a移动到末尾的时候,b就恰好移动到倒数第n个数也就是我们通过a指针限制b只能移动(len
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p