PaddlePaddle课程学习第一周笔记

人工智能、机器学习、深度学习的关系

PaddlePaddle课程学习第一周笔记_第1张图片

机器学习的过程分为假设、评价和优化三个阶段:

  1. 假设:通过观察加速度a和作用力F的观测数据,假设aaa和FFF是 线性关系,即a=w∗Fa = w * Fa=w∗F。
  2. 评价:对已知观测数据上的拟合效果好,即w∗Fw * Fw∗F计算的结果,要和观测的aaa尽量接近。
  3. 优化:在参数w的所有可能取值中,发现w=1/mw=1/mw=1/m可使得评价最好(最拟合观测样本)。

构建神经网络/深度学习模型的基本步骤

在这里插入图片描述

数据处理

数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装load data函数。数据预处理后,才能被模型调用。

模型设计

模型设计是深度学习模型关键要素之一,也称为网络结构设计,相当于模型的假设空间,即实现模型“前向计算”(从输入到输出)的过程。

训练配置

模型设计完成后,需要通过训练配置寻找模型的最优值,即通过损失函数来衡量模型的好坏。训练配置也是深度学习模型关键要素之一。

训练过程

求解参数www和bbb的数值,这个过程也称为模型训练过程。训练过程是深度学习模型的关键要素之一,其目标是让定义的损失函数LossLossLoss尽可能的小,也就是说找到一个参数解www和bbb使得损失函数取得极小值。

波士顿房价预测代码

import numpy as np
import json

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置固定的随机数种子
        #np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b
        return z
    
    def loss(self, z, y):
        error = z - y
        num_samples = error.shape[0]
        cost = error * error
        cost = np.sum(cost) / num_samples
        return cost
    
    def gradient(self, x, y):
        z = self.forward(x)
        N = x.shape[0]
        gradient_w = 1. / N * np.sum((z-y) * x, axis=0)
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = 1. / N * np.sum(z-y)
        return gradient_w, gradient_b
    
    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
            
                
    def train(self, training_data, num_epoches, batch_size=10, eta=0.01):
        n = len(training_data)
        losses = []
        for epoch_id in range(num_epoches):
            # 在每轮迭代开始之前,将训练数据的顺序随机打乱
            # 然后再按每次取batch_size条数据的方式取出
            np.random.shuffle(training_data)
            # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
            mini_batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
            for iter_id, mini_batch in enumerate(mini_batches):
                #print(self.w.shape)
                #print(self.b)
                x = mini_batch[:, :-1]
                y = mini_batch[:, -1:]
                a = self.forward(x)
                loss = self.loss(a, y)
                gradient_w, gradient_b = self.gradient(x, y)
                self.update(gradient_w, gradient_b, eta)
                losses.append(loss)
                print('Epoch {:3d} / iter {:3d}, loss = {:.4f}'.
                                 format(epoch_id, iter_id, loss))
        
        return losses

# 获取数据
train_data, test_data = load_data()

# 创建网络
net = Network(13)
# 启动训练
losses = net.train(train_data, num_epoches=50, batch_size=100, eta=0.1)

# 画出损失函数的变化趋势
plot_x = np.arange(len(losses))
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

深度学习框架设计思路

PaddlePaddle课程学习第一周笔记_第2张图片

飞桨开源深度学习平台PaddlePaddle课程学习第一周笔记_第3张图片

波士顿房价预测模型飞桨实现代码

#加载飞桨、Numpy和相关类库
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph import Linear
import numpy as np
import os
import random

# 数据处理
def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    #ratio = 0.8
    #offset = int(data.shape[0] * ratio)
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

# 模型设计
class Regressor(fluid.dygraph.Layer):
    def __init__(self):
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
        self.fc = Linear(input_dim=13, output_dim=1, act=None)
    
    # 网络的前向计算函数
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

# 训练配置
# 定义飞桨动态图的工作环境
with fluid.dygraph.guard():
    # 声明定义好的线性回归模型
    model = Regressor()
    # 开启模型训练模式
    model.train()
    # 加载数据
    training_data, test_data = load_data()
    # 定义优化算法,这里使用随机梯度下降-SGD
    # 学习率设置为0.01
    opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list=model.parameters())

# 训练过程
with dygraph.guard(fluid.CPUPlace()):
    EPOCH_NUM = 10   # 设置外层循环次数
    BATCH_SIZE = 10  # 设置batch大小
    
    # 定义外层循环
    for epoch_id in range(EPOCH_NUM):
        # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
        np.random.shuffle(training_data)
        # 将训练数据进行拆分,每个batch包含10条数据
        mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
        # 定义内层循环
        for iter_id, mini_batch in enumerate(mini_batches):
            x = np.array(mini_batch[:, :-1]).astype('float32') # 获得当前批次训练数据
            y = np.array(mini_batch[:, -1:]).astype('float32') # 获得当前批次训练标签(真实房价)
            # 将numpy数据转为飞桨动态图variable形式
            house_features = dygraph.to_variable(x)
            prices = dygraph.to_variable(y)
            
            # 前向计算
            predicts = model(house_features)
            
            # 计算损失
            loss = fluid.layers.square_error_cost(predicts, label=prices)
            avg_loss = fluid.layers.mean(loss)
            if iter_id%20==0:
                print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
            
            # 反向传播
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.minimize(avg_loss)
            # 清除梯度
            model.clear_gradients()
# 保存模型
# 定义飞桨动态图工作环境
with fluid.dygraph.guard():
    # 保存模型参数,文件名为LR_model
    fluid.save_dygraph(model.state_dict(), 'LR_model')
# 测试模型

def load_one_example(data_dir):
    f = open(data_dir, 'r')
    datas = f.readlines()
    # 选择倒数第10条数据用于测试
    tmp = datas[-10]
    tmp = tmp.strip().split()
    one_data = [float(v) for v in tmp]

    # 对数据进行归一化处理
    for i in range(len(one_data)-1):
        one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])

    data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)
    label = one_data[-1]
    return data, label
with dygraph.guard():
    # 参数为保存模型参数的文件地址
    model_dict, _ = fluid.load_dygraph('LR_model')
    model.load_dict(model_dict)
    model.eval()

    # 参数为数据集的文件地址
    test_data, label = load_one_example()
    # 将数据转为动态图的variable格式
    test_data = dygraph.to_variable(test_data)
    results = model(test_data)

    # 对结果做反归一化处理
    results = results * (max_values[-1] - min_values[-1]) + avg_values[-1]
    print("Inference result is {}, the corresponding label is {}".format(results.numpy(), label))

体会

  1. 第一周的学习让我对深度学习有了大概的了解。
  2. 深度学习模型建立的五个基本步骤: 数据处理、模型设计、训练配置、训练过程、模型保存,按照步骤建立好模型后再去根据情况不断调优,以期达到良好的效果。
  3. 学习过程用到了不少数学知识和公式推导,以前的学的都快忘光了,需要找时间补习下数学方面的知识。

你可能感兴趣的:(深度学习,机器学习,深度学习)