Python绘图总结(Matplotlib篇)之画布、颜色、及样式

学习https://matplotlib.org/gallery/index.html 记录,描述不一定准确,具体请参考官网。

Matplotlib使用总结图

# 使用该魔法,不用写plt.show(),以及可以边写边运行
%matplotlib notebook

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号

import pandas as pd
import numpy as np
   
   
   
   

    标题及轴标签

    def f(t):
        s1 = np.cos(2*np.pi*t)
        e1 = np.exp(-t)
        return s1 * e1
    
    t1 = np.arange(0.0, 5.0, 0.1)
    t2 = np.arange(0.0, 5.0, 0.02)
    t3 = np.arange(0.0, 2.0, 0.01)
    
    box = dict(facecolor='yellow', pad=5, alpha=0.2)
    
    # 整个画板的标题
    plt.suptitle('我的画板标题', fontsize=16, fontweight='bold')
    plt.subplots_adjust(left=0.2, wspace=0.8, top=0.8)  #位置调整
    
    plt.subplot(121)
    plt.plot(t1, f(t1), 'o', t2, f(t2), '-')
    plt.title('画板1',color='r')
    plt.ylabel('Y轴',bbox=box)
    
    
    plt.subplot(122)
    plt.plot(t3, np.cos(2*np.pi*t3), '--')
    plt.title('画板2', color='b')
    plt.xlabel('X 轴',bbox=box)
    plt.ylabel('Y 轴',bbox=box)
    
    
    
    
    plt.show()
       
       
       
       

      这里写图片描述

      样式

      x1 = np.linspace(0.0, 5.0)
      x2 = np.linspace(0.0, 2.0)
      
      y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
      y2 = np.cos(2 * np.pi * x2)
      
      plt.subplot(2, 1, 1)
      # "o-r"中r表示红色,o表示实点,-表示连接线
      # 可以写成 ro- 或 or- 或 -or 顺序不要求
      plt.plot(x1, y1, 'o-r')  
      
      
      plt.subplot(2, 1, 2)
      plt.plot(x2, y2, '.-')
      
      plt.show()
         
         
         
         

        这里写图片描述

        这里写图片描述

        t = np.arange(0.0, 2.0, 0.01)
        s = np.sin(2 * np.pi * t)
        
        fig, ax = plt.subplots()
        ax.plot(t, s)
        # 网格
        ax.grid(True, linestyle='-.')
        # 坐标
        # ax.tick_params(axis='both',labelcolor='r', labelsize='medium', width=3)
        ax.tick_params(axis='x',labelcolor='gold', labelsize='medium', width=3)
        ax.tick_params(axis='y',labelcolor='b', labelsize='medium', width=2)
        
        # 注释
        ax.annotate("这是注释\n"
                         "这是注释", (0.5, 0.5),
                         xycoords="axes fraction", va="center", ha="center",
                         bbox=dict(boxstyle="round, pad=1", fc="w"))
        
        
        plt.show()
           
           
           
           

          这里写图片描述

          data = np.random.randn(30).cumsum()
          plt.plot(data, 'r--', label='Default',marker='o') 
          # 写这步运行直接添加到上图中
          plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
          plt.legend(loc='best')
          
             
             
             
             

            这里写图片描述

            使用内置样式

            # 全部内置样式
            
            from matplotlib import style
            print(plt.style.available)
               
               
               
               

              ‘bmh’, ‘classic’, ‘dark_background’, ‘fast’, ‘fivethirtyeight’, ‘ggplot’, ‘grayscale’, ‘seaborn-bright’, ‘seaborn-muted’, ‘seaborn-notebook’, ‘seaborn-paper’, ‘seaborn-pastel’, ‘seaborn-poster’, ‘seaborn-talk’, ‘seaborn-ticks’, ‘seaborn-white’, ‘seaborn-whitegrid’, ‘seaborn’, ‘Solarize_Light2’, ‘tableau-colorblind10’, ‘_classic_test’

              plt.style.use('dark_background')
              
              fig, ax = plt.subplots()
              
              L = 6
              x = np.linspace(0, L)
              ncolors = len(plt.rcParams['axes.prop_cycle'])
              shift = np.linspace(0, L, ncolors, endpoint=False)
              for s in shift:
                  ax.plot(x, np.sin(x + s), 'o-')
              ax.set_xlabel('x-axis')
              ax.set_ylabel('y-axis')
              ax.set_title("'dark_background' style sheet")
              
              plt.show()
                 
                 
                 
                 

                这里写图片描述

                plt.style.use('fivethirtyeight')
                
                x = np.linspace(0, 10)
                
                # Fixing random state for reproducibility
                np.random.seed(19680801)
                
                fig, ax = plt.subplots()
                
                ax.plot(x, np.sin(x) + x + np.random.randn(50))
                ax.plot(x, np.sin(x) + 0.5 * x + np.random.randn(50))
                ax.plot(x, np.sin(x) + 2 * x + np.random.randn(50))
                ax.plot(x, np.sin(x) - 0.5 * x + np.random.randn(50))
                ax.plot(x, np.sin(x) - 2 * x + np.random.randn(50))
                ax.plot(x, np.sin(x) + np.random.randn(50))
                ax.set_title("'fivethirtyeight' style sheet")
                
                plt.show()
                   
                   
                   
                   

                  这里写图片描述

                  线条及填充

                  t = np.arange(-1, 2, .01)
                  s = np.sin(2 * np.pi * t)
                  
                  #曲线
                  plt.plot(t, s)
                  
                  # 以y轴0点画横线
                  plt.axhline(linewidth=8, color='#d62728')
                  
                  # 画横线
                  plt.axhline(y=1)
                  
                  # 画纵线
                  plt.axvline(x=1)
                  
                  # Draw a thick blue vline at x=0 that spans the upper quadrant of the yrange
                  # plt.axvline(x=0, ymin=0.75, linewidth=8, color='#1f77b4')
                  
                  # 画线段
                  plt.axhline(y=.5, xmin=0.25, xmax=0.75)
                  
                  # 平行填充
                  plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
                  
                  # 垂直填充
                  plt.axvspan(1.25, 1.55, facecolor='#2ca02c', alpha=0.5)
                  
                  # 坐标轴
                  plt.axis([-1, 2, -1, 2])
                  
                  plt.show()
                     
                     
                     
                     

                    这里写图片描述

                    交差及填充

                    x = np.arange(0.0, 2, 0.01)
                    y1 = np.sin(2*np.pi*x)
                    y2 = 1.2*np.sin(4*np.pi*x)
                    
                    fig, ax = plt.subplots()
                    ax.plot(x, y1, x, y2, color='black')
                    ax.fill_between(x, y1, y2, where=y2>y1, facecolor='green')
                    ax.fill_between(x, y1, y2, where=y2<=y1, facecolor='red')
                    ax.set_title('fill between where')
                    
                    plt.show()
                       
                       
                       
                       

                      这里写图片描述

                      import numpy as np
                      import matplotlib.pyplot as plt
                      import matplotlib.collections as collections
                      
                      
                      t = np.arange(0.0, 2, 0.01)
                      s1 = np.sin(2*np.pi*t)
                      s2 = 1.2*np.sin(4*np.pi*t)
                      
                      
                      fig, ax = plt.subplots()
                      ax.set_title('using span_where')
                      ax.plot(t, s1, color='black')
                      ax.axhline(0, color='black', lw=2)
                      
                      collection = collections.BrokenBarHCollection.span_where(
                          t, ymin=0, ymax=1, where=s1 > 0, facecolor='green', alpha=0.5)
                      ax.add_collection(collection)
                      
                      collection = collections.BrokenBarHCollection.span_where(
                          t, ymin=-1, ymax=0, where=s1 < 0, facecolor='red', alpha=0.5)
                      ax.add_collection(collection)
                      
                      
                      plt.show()
                         
                         
                         
                         

                        这里写图片描述

                        图例

                        ax = plt.subplot(111)
                        t1 = np.arange(0.0, 1.0, 0.01)
                        for n in [1, 2, 3, 4]:
                            plt.plot(t1, t1**n, label="n=%d"%(n,))
                        
                        # plt.legend()
                        leg = plt.legend(loc='best', ncol=2, mode="expand", shadow=True, fancybox=True)
                        leg.get_frame().set_alpha(0.5)
                        
                        
                        plt.show()
                           
                           
                           
                           

                          这里写图片描述

                          # Make some fake data.
                          a = b = np.arange(0, 3, .02)
                          c = np.exp(a)
                          d = c[::-1]
                          
                          # Create plots with pre-defined labels.
                          fig, ax = plt.subplots()
                          ax.plot(a, c, 'k--', label='Model length')
                          ax.plot(a, d, 'r:', label='Data length')
                          ax.plot(a, c + d, 'b', label='Total message length')
                          
                          legend = ax.legend(loc='upper center', shadow=True, fontsize='x-large')
                          
                          # Put a nicer background color on the legend.
                          legend.get_frame().set_facecolor('#00FFCC')
                          
                          plt.show()
                             
                             
                             
                             

                            这里写图片描述

                            颜色

                            %matplotlib inline
                            
                            from cycler import cycler
                            import numpy as np
                            import matplotlib.pyplot as plt
                            
                            
                            x = np.linspace(0, 2 * np.pi)
                            offsets = np.linspace(0, 2*np.pi, 4, endpoint=False)
                            # Create array with shifted-sine curve along each column
                            yy = np.transpose([np.sin(x + phi) for phi in offsets])
                            
                            # 1. Setting prop cycle on default rc parameter
                            plt.rc('lines', linewidth=4)
                            plt.rc('axes', prop_cycle=(cycler('color', ['r', 'g', 'b', 'y']) +
                                                       cycler('linestyle', ['-', '--', ':', '-.'])))
                            fig, (ax0, ax1) = plt.subplots(nrows=2, facecolor='darkslategray')
                            ax0.plot(yy)
                            ax0.set_title('Set default color cycle to rgby')
                            
                            # 2. Define prop cycle for single set of axes
                            ax1.set_prop_cycle(cycler('color', ['c', 'm', 'y', 'k']) +
                                               cycler('lw', [1, 2, 3, 4]))
                            ax1.plot(yy)
                            ax1.set_title('Set axes color cycle to cmyk')
                            
                            # Tweak spacing between subplots to prevent labels from overlapping
                            fig.subplots_adjust(hspace=0.3)
                            plt.show()
                               
                               
                               
                               

                              这里写图片描述

                              你可能感兴趣的:(Python绘图总结(Matplotlib篇)之画布、颜色、及样式)