目录
一、仿射变换原理介绍
1、原理部分
2、代码实现部分以及部分主要函数解析
2.1 代码实现部分
2.2.主要函数
2.2.1.α通道原理
在计算机视觉的应用里,有一个叫仿射变换的重要变换。主要效果是实现两个不同图片的插入拼接,在计算机视觉编程的这本书里,作者将甲壳虫乐队的照片与广告牌进行了拼接,十分有意思。而在这篇博客里,将详细介绍放射变换的原理以及简单的应用。
在仿射变换的,映射有正向映射与反向映射两种做法。
而无论是正向,还是反向映射,主要都是通过变换前后图像传统几何坐标系下的坐标变换进行处理。
在经过对比后,我个人比较倾向逆向映射,因为这主要是在结果模型中的目标位置,用原图像素点进行替换。这样做的好处主要是在目的区域的像素与替换图像一致,而前向映射可能会出现变换完成后像素点不一致的结果。
# -*- coding: utf-8 -*-
from PCV.geometry import warp, homography
from PIL import Image
from pylab import *
from scipy import ndimage
# example of affine warp of im1 onto im2
im1 = array(Image.open('bbb.jpg').convert('L'))
im2 = array(Image.open('aaa.jpg').convert('L'))
# set to points
tp = array([[20,160,160,20],[100,100,305,305],[1,1,1,1]]) //这行是对插入图像的定位,左边是纵坐标,右边是横坐标//
#tp = array([[675,826,826,677],[55,52,281,277],[1,1,1,1]])
im3 = warp.image_in_image(im1,im2,tp)
figure()
gray()
subplot(141)
axis('off')
imshow(im1)
subplot(142)
axis('off')
imshow(im2)
subplot(143)
axis('off')
imshow(im3)
# set from points to corners of im1
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])
# first triangle
tp2 = tp[:,:3]
fp2 = fp[:,:3]
# compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])
# alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im3 = (1-alpha)*im2 + alpha*im1_t
# second triangle
tp2 = tp[:,[0,2,3]]
fp2 = fp[:,[0,2,3]]
# compute H
H = homography.Haffine_from_points(tp2,fp2)
im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])
# alpha for triangle
alpha = warp.alpha_for_triangle(tp2,im2.shape[0],im2.shape[1])
im4 = (1-alpha)*im3 + alpha*im1_t
subplot(144)
imshow(im4)
axis('off')
show()
下上面的主函数里,调用了一个叫warp的包,这个包里有一些实现变换的重要函数。
import matplotlib.delaunay as md
from scipy import ndimage
from pylab import *
from numpy import *
from PCV.geometry import homography
def image_in_image(im1,im2,tp):
""" Put im1 in im2 with an affine transformation
such that corners are as close to tp as possible.
tp are homogeneous and counter-clockwise from top left. """
# points to warp from
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])
# compute affine transform and apply
H = homography.Haffine_from_points(tp,fp)
im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])
alpha = (im1_t > 0)
return (1-alpha)*im2 + alpha*im1_t
def combine_images(im1,im2,alpha):
""" Blend two images with weights as in alpha. """
return (1-alpha)*im1 + alpha*im2
def alpha_for_triangle(points,m,n):
""" Creates alpha map of size (m,n)
for a triangle with corners defined by points
(given in normalized homogeneous coordinates). """
alpha = zeros((m,n))
for i in range(min(points[0]),max(points[0])):
for j in range(min(points[1]),max(points[1])):
x = linalg.solve(points,[i,j,1])
if min(x) > 0: #all coefficients positive
alpha[i,j] = 1
return alpha
def triangulate_points(x,y):
""" Delaunay triangulation of 2D points. """
centers,edges,tri,neighbors = md.delaunay(x,y)
return tri
def plot_mesh(x,y,tri):
""" Plot triangles. """
for t in tri:
t_ext = [t[0], t[1], t[2], t[0]] # add first point to end
plot(x[t_ext],y[t_ext],'r')
def pw_affine(fromim,toim,fp,tp,tri):
""" Warp triangular patches from an image.
fromim = image to warp
toim = destination image
fp = from points in hom. coordinates
tp = to points in hom. coordinates
tri = triangulation. """
im = toim.copy()
# check if image is grayscale or color
is_color = len(fromim.shape) == 3
# create image to warp to (needed if iterate colors)
im_t = zeros(im.shape, 'uint8')
for t in tri:
# compute affine transformation
H = homography.Haffine_from_points(tp[:,t],fp[:,t])
if is_color:
for col in range(fromim.shape[2]):
im_t[:,:,col] = ndimage.affine_transform(
fromim[:,:,col],H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])
else:
im_t = ndimage.affine_transform(
fromim,H[:2,:2],(H[0,2],H[1,2]),im.shape[:2])
# alpha for triangle
alpha = alpha_for_triangle(tp[:,t],im.shape[0],im.shape[1])
# add triangle to image
im[alpha>0] = im_t[alpha>0]
return im
def panorama(H,fromim,toim,padding=2400,delta=2400):
""" Create horizontal panorama by blending two images
using a homography H (preferably estimated using RANSAC).
The result is an image with the same height as toim. 'padding'
specifies number of fill pixels and 'delta' additional translation. """
# check if images are grayscale or color
is_color = len(fromim.shape) == 3
# homography transformation for geometric_transform()
def transf(p):
p2 = dot(H,[p[0],p[1],1])
return (p2[0]/p2[2],p2[1]/p2[2])
if H[1,2]<0: # fromim is to the right
print 'warp - right'
# transform fromim
if is_color:
# pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding,3))))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],
transf,(toim.shape[0],toim.shape[1]+padding))
else:
# pad the destination image with zeros to the right
toim_t = hstack((toim,zeros((toim.shape[0],padding))))
fromim_t = ndimage.geometric_transform(fromim,transf,
(toim.shape[0],toim.shape[1]+padding))
else:
print 'warp - left'
# add translation to compensate for padding to the left
H_delta = array([[1,0,0],[0,1,-delta],[0,0,1]])
H = dot(H,H_delta)
# transform fromim
if is_color:
# pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding,3)),toim))
fromim_t = zeros((toim.shape[0],toim.shape[1]+padding,toim.shape[2]))
for col in range(3):
fromim_t[:,:,col] = ndimage.geometric_transform(fromim[:,:,col],
transf,(toim.shape[0],toim.shape[1]+padding))
else:
# pad the destination image with zeros to the left
toim_t = hstack((zeros((toim.shape[0],padding)),toim))
fromim_t = ndimage.geometric_transform(fromim,
transf,(toim.shape[0],toim.shape[1]+padding))
# blend and return (put fromim above toim)
if is_color:
# all non black pixels
alpha = ((fromim_t[:,:,0] * fromim_t[:,:,1] * fromim_t[:,:,2] ) > 0)
for col in range(3):
toim_t[:,:,col] = fromim_t[:,:,col]*alpha + toim_t[:,:,col]*(1-alpha)
else:
alpha = (fromim_t > 0)
toim_t = fromim_t*alpha + toim_t*(1-alpha)
return toim_t
在导入这个函数的时候,如果你的python版本是3.6及以后的可能会出现报错,主要是关于import matplotlib.delaunay as md 。这是因为该函数包在该版本已被弃用。读者如果遇到这个报错可以选择两个途径解决:
1.改import matplotlib.delaunay as md为importmatplotlib。这个是我所使用的办法,我个人认为可能会有隐患,不过matplotlib包里可能会有新版本的功能函数来代替delaunay,所以也不用过于担心。
2.在warp函数里手动输入delaunay的函数实现,这个方法应该挺可靠的,网络上应该也有delaunay的实现方式。
在上面的函数里,使用到了一个很重要的原理,α通道。
α通道主要是针对图像的透明度区分了不同的通道,会产生不同的透明度以及透视效果,其中白表示不透明,黑表示透明,灰表示半透明。主要作用是使得变换后的图像符合人的正常视觉结果。
def alpha_for_triangle(points,m,n):
""" Creates alpha map of size (m,n)
for a triangle with corners defined by points
(given in normalized homogeneous coordinates). """
alpha = zeros((m,n))
for i in range(min(points[0]),max(points[0])):
for j in range(min(points[1]),max(points[1])):
x = linalg.solve(points,[i,j,1])
if min(x) > 0: #all coefficients positive
alpha[i,j] = 1
return alpha
这段函数用于计算alpha的返回值。
def image_in_image(im1,im2,tp):
""" Put im1 in im2 with an affine transformation
such that corners are as close to tp as possible.
tp are homogeneous and counter-clockwise from top left. """
# points to warp from
m,n = im1.shape[:2]
fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])
# compute affine transform and apply
H = homography.Haffine_from_points(tp,fp)
im1_t = ndimage.affine_transform(im1,H[:2,:2],
(H[0,2],H[1,2]),im2.shape[:2])
alpha = (im1_t > 0)
return (1-alpha)*im2 + alpha*im1_t
这段函数是在于利用alpha的返回值,计算两张图片叠加时的透明度结果。