iOS Lock的介绍



锁是最常用的同步工具。一段代码段在同一个时间只能允许被有限个线程访问,比如一个线程 A 进入需要保护代码之前添加简单的互斥锁,另一个线程 B 就无法访问,只有等待前一个线程 A 执行完被保护的代码后解锁,B 线程才能访问被保护代码。


 普通的锁NSLock 遵循 NSLocking 协议,lock 方法是加锁,unlock 是解锁,tryLock 是尝试加锁,如果失败的话返回 NO,lockBeforeDate: 是在指定Date之前尝试加锁,如果在指定时间之前都不能加锁,则返回NO
    NSLock *lock=[[NSLock alloc] init];

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        [lock lock];
        NSLog(@"线程1");
        sleep(10);
        [lock unlock];
        NSLog(@"线程1解锁成功");
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        if ([lock tryLock]) {
            NSLog(@"线程2");
            [lock unlock];
        }else{
            NSLog(@"尝试加锁失败");
        }

        [lock unlock];
    });
    
   条件锁 NSConditionLock
@interface NSConditionLock : NSObject <NSLocking> {
@private
    void *_priv;
}

- (instancetype)initWithCondition:(NSInteger)condition NS_DESIGNATED_INITIALIZER;

@property (readonly) NSInteger condition;
- (void)lockWhenCondition:(NSInteger)condition;
- (BOOL)tryLock;
- (BOOL)tryLockWhenCondition:(NSInteger)condition;
- (void)unlockWithCondition:(NSInteger)condition;
- (BOOL)lockBeforeDate:(NSDate *)limit;
- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit;

@property (nullable, copy) NSString *name NS_AVAILABLE(10_5, 2_0);

@end
NSConditionLock 和 NSLock 类似,都遵循 NSLocking 协议,方法都类似,只是多了一个 condition 属性,以及每个操作都多了一个关于 condition 属性的方法,例如 tryLock,tryLockWhenCondition:,NSConditionLock 可以称为条件锁,只有 condition 参数与初始化时候的 condition 相等,lock 才能正确进行加锁操作。而 unlockWithCondition: 并不是当 Condition 符合条件时才解锁,而是解锁之后,修改 Condition 的值,这个结论可以从下面的例子中得出。

    //主线程中
    NSConditionLock *lock = [[NSConditionLock alloc] initWithCondition:0];
    
    //线程1
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        [lock lockWhenCondition:1];
        NSLog(@"线程1");
        sleep(2);
        [lock unlock];
    });
    
    //线程2
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);//以保证让线程2的代码后执行
        if ([lock tryLockWhenCondition:0]) {
            NSLog(@"线程2");
            [lock unlockWithCondition:2];
            NSLog(@"线程2解锁成功");
        } else {
            NSLog(@"线程2尝试加锁失败");
        }
    });
    
    //线程3
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(2);//以保证让线程2的代码后执行
        if ([lock tryLockWhenCondition:2]) {
            NSLog(@"线程3");
            [lock unlock];
            NSLog(@"线程3解锁成功");
        } else {
            NSLog(@"线程3尝试加锁失败");
        }
    });
    
    //线程4
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(3);//以保证让线程2的代码后执行
        if ([lock tryLockWhenCondition:2]) {
            NSLog(@"线程4");
            [lock unlockWithCondition:1];    
            NSLog(@"线程4解锁成功");
        } else {
            NSLog(@"线程4尝试加锁失败");
        }
    });
    
2016-08-19 13:51:15.353 ThreadLockControlDemo[1614:110697] 线程2
2016-08-19 13:51:15.354 ThreadLockControlDemo[1614:110697] 线程2解锁成功
2016-08-19 13:51:16.353 ThreadLockControlDemo[1614:110689] 线程3
2016-08-19 13:51:16.353 ThreadLockControlDemo[1614:110689] 线程3解锁成功
2016-08-19 13:51:17.354 ThreadLockControlDemo[1614:110884] 线程4
2016-08-19 13:51:17.355 ThreadLockControlDemo[1614:110884] 线程4解锁成功
2016-08-19 13:51:17.355 ThreadLockControlDemo[1614:110884] 线程1
上面代码先输出了 ”线程 2“,因为线程 1 的加锁条件不满足,初始化时候的 condition 参数为 0,而加锁条件是 condition 为 1,所以加锁失败。locakWhenCondition 与 lock 方法类似,加锁失败会阻塞线程,所以线程 1 会被阻塞着,而 tryLockWhenCondition 方法就算条件不满足,也会返回 NO,不会阻塞当前线程。

回到上面的代码,线程 2 执行了 [lock unlockWithCondition:2]; 所以 Condition 被修改成了 2。

而线程 3 的加锁条件是 Condition 为 2, 所以线程 3 才能加锁成功,线程 3 执行了 [lock unlock]; 解锁成功且不改变 Condition 值。

线程 4 的条件也是 2,所以也加锁成功,解锁时将 Condition 改成 1。这个时候线程 1 终于可以加锁成功,解除了阻塞。

从上面可以得出,NSConditionLock 还可以实现任务之间的依赖。
    递归锁NSRecursiveLock 是递归锁,他和 NSLock 的区别在于,NSRecursiveLock 可以在一个线程中重复加锁(反正单线程内任务是按顺序执行的,不会出现资源竞争问题),NSRecursiveLock 会记录上锁和解锁的次数,当二者平衡的时候,才会释放锁,其它线程才可以上锁成功。
    NSRecursiveLock *lock=[[NSRecursiveLock alloc] init];

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

        static void (^RecursiveBlock)(int);
        RecursiveBlock = ^(int value){
            [lock lock];
            if (value > 0) {
                NSLog(@"value = %d",value);
                RecursiveBlock(value - 1);
            }
            [lock unlock];
        };
        RecursiveBlock(2);

    });
    
  static  void (^digui)(int);

    digui = ^(int value){

        if (value>0) {
            NSLog(@"----%d",value);
            digui(value-1);
        }
    };
    digui(10000000000);

    
    等待锁NSCondition 的对象实际上作为一个锁和一个线程检查器,锁上之后其它线程也能上锁,而之后可以根据条件决定是否继续运行线程,即线程是否要进入 waiting 状态,经测试,NSCondition 并不会像上文的那些锁一样,先轮询,而是直接进入 waiting 状态,当其它线程中的该锁执行 signal 或者 broadcast 方法时,线程被唤醒,继续运行之后的方法。
    NSCondition *lock=[[NSCondition alloc] init];
    NSMutableArray *array=[NSMutableArray new];
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        [lock lock];
        while (!array.count) {
            [lock wait];
        }
        [array removeAllObjects];
        NSLog(@"array remove all");
        [lock unlock];
    });


    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [lock lock];
        [array addObject:@1];
        NSLog(@"array addobject@1");
        [lock signal];//其中 signal 和 broadcast 方法的区别在于,signal 只是一个信号量,只能唤醒一个等待的线程,想唤醒多个就得多次调用,而 broadcast 可以唤醒所有在等待的线程。如果没有等待的线程,这两个方法都没有作用。
        [lock unlock];
       });
    
    
    同步锁@synchronized(object) 指令使用的 object 为该锁的唯一标识,只有当标识相同时,才满足互斥,所以如果线程 2 中的 @synchronized(self) 改为@synchronized(self.view),则线程2就不会被阻塞,@synchronized 指令实现锁的优点就是我们不需要在代码中显式的创建锁对象,便可以实现锁的机制,但作为一种预防措施,@synchronized 块会隐式的添加一个异常处理例程来保护代码,该处理例程会在异常抛出的时候自动的释放互斥锁。@synchronized 还有一个好处就是不用担心忘记解锁了
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        @synchronized (nil) {
            sleep(2);
            NSLog(@"线程1");
        }
        NSLog(@"线程1解锁成功");
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        @synchronized (nil) {
            NSLog(@"线程2");
        }

      });

    
    
    dispatch_semaphore
    dispatch_semaphore 是 GCD 用来同步的一种方式,与他相关的只有三个函数,一个是创建信号量,一个是等待信号,一个是发送信号。

    dispatch_semaphore_create(long value);
    dispatch_semaphore_wait(dispatch_semaphore_t  _Nonnull dsema, dispatch_time_t timeout);
    dispatch_semaphore_signal(dispatch_semaphore_t  _Nonnull dsema);
    
    
    
    dispatch_semaphore 和 NSCondition 类似,都是一种基于信号的同步方式,但 NSCondition 信号只能发送,不能保存(如果没有线程在等待,则发送的信号会失效)。而 dispatch_semaphore 能保存发送的信号。dispatch_semaphore 的核心是 dispatch_semaphore_t 类型的信号量。

    dispatch_semaphore_create(1) 方法可以创建一个 dispatch_semaphore_t 类型的信号量,设定信号量的初始值为 1。注意,这里的传入的参数必须大于或等于 0,否则 dispatch_semaphore_create 会返回 NULLdispatch_semaphore_wait(signal, overTime); 方法会判断 signal 的信号值是否大于 0。大于 0 不会阻塞线程,消耗掉一个信号,执行后续任务。如果信号值为 0,该线程会和 NSCondition 一样直接进入 waiting 状态,等待其他线程发送信号唤醒线程去执行后续任务,或者当 overTime  时限到了,也会执行后续任务。

    dispatch_semaphore_signal(signal); 发送信号,如果没有等待的线程接受信号,则使 signal 信号值加一(做到对信号的保存)。

    从上面的实例代码可以看到,一个 dispatch_semaphore_wait(signal, overTime); 方法会去对应一个 dispatch_semaphore_signal(signal); 看起来像 NSLock 的 lock 和 unlock,其实可以这样理解,区别只在于有信号量这个参数,lock unlock 只能同一时间,一个线程访问被保护的临界区,而如果 dispatch_semaphore 的信号量初始值为 x ,则可以有 x 个线程同时访问被保护的临界区
    dispatch_semaphore_t signal = dispatch_semaphore_create(1);

    dispatch_time_t overtime = dispatch_time(DISPATCH_TIME_NOW, 3 * NSEC_PER_SEC);
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        dispatch_semaphore_wait(signal, overtime);
        sleep(2);
        NSLog(@"线程1");
        dispatch_semaphore_signal(signal);

    });
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        dispatch_semaphore_wait(signal, overtime);
        NSLog(@"线程2");
        dispatch_semaphore_signal(signal);
    });
    
    
    
    OSSpinLock 是一种自旋锁,也只有加锁,解锁,尝试加锁三个方法。和 NSLock 不同的是 NSLock 请求加锁失败的话,会先轮询,但一秒过后便会使线程进入 waiting 状态,等待唤醒。而 OSSpinLock 会一直轮询,等待时会消耗大量 CPU 资源,不适用于较长时间的任务。
    
    __block OSSpinLock theLock = OS_SPINLOCK_INIT;
        dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
            OSSpinLockLock(&theLock);
            NSLog(@"线程1");
            sleep(10);
            OSSpinLockUnlock(&theLock);
            NSLog(@"线程1解锁成功");
        });

        dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
            sleep(1);
            OSSpinLockLock(&theLock);
            NSLog(@"线程2");
            OSSpinLockUnlock(&theLock);
        });
拿上面的输出结果和上文 NSLock 的输出结果做对比,会发现 sleep(10) 的情况,OSSpinLock 中的“线程 2”并没有和”线程 1解锁成功“在一个时间输出,而 NSLock 这里是同一时间输出,而是有一点时间间隔,所以 OSSpinLock 一直在做着轮询,而不是像 NSLock 一样先轮询,再 waiting 等唤醒。

    pthread_mutex
    
    

知识点学习IOS

你可能感兴趣的:(ios)