LeakCanary 细解初始化之一

       今天来写一个关于LeakCanary-1.5.0的一些心得;我们移动端性能方面第一个就想到使用LeakCanary;但是很多使用LeakCanary无法解析,以及LeakCanary在不同手机上面也会有不同的一些提示;我这边自己抽了一些时间,对LeakCanary的架构进行分析,以及代码的实现过程进行分析;不知道一篇能不能写完:下面先上一个图;      

      这个是自己画的LeakCanary的uml图;仅仅画了初始化的地方;这边会从这个图一步步解析LeakCanary的作用;首先我们先看到LeakCanary的初始化

     1)install(Application application)初始化方法

public static RefWatcher install(Application application) {
    return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
        .excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
        .buildAndInstall();
  }
 public static AndroidRefWatcherBuilder refWatcher(Context context) {
    return new AndroidRefWatcherBuilder(context);
  }

  其中new 一个AndroidRefWatcherBuilder对象,开始注册listenerServiceClass并且注册一个ExcludedRefs,最后进行组装;

其中buildAndInstall方法里面涉及到了Application注册Activity的生命周期;主要在生命周期的里面的onActivityDestroyed里面进行触发一个方法ActivityRefWatcher.this.onActivityDestroyed(activity);

    2)我们开始分析,第一步new AndroidRefWatcherBuilder并且设置ApplicationContext;

    3)设置listenerServiceClass;其中传入了DisplayLeakService.class;(专门处理heapDump文件)

     DisplayLeakService的父类是AbstractAnalysisResultService,AbstractAnalysisResultService的父类是IntentService。其实走到这一步;大概能看出来做一个异步的耗时操作了;肯定是在onHandleIntent(Intent intent);并且sendResultToListener是进行发送耗时操作的方式;获取heapDump文件,进行分析;重写onHeapAnalyzed方法,具体在DisplayLeakService实现;(具体实现后面分析)

    4)  获取AndroidExcludedRefs;创建ExcludedRefs对象;里面更多包含的是配置

    先看一下createAndroidDefaults方法;其中里面默认实现了SOFT_REFERENCES, FINALIZER_WATCHDOG_DAEMON, MAIN, LEAK_CANARY_THREAD, EVENT_RECEIVER__MMESSAGE_QUEUE;

     A) SOFT_REFERENCES:

a.注册软引用的类名

b.注册弱引用的类名

c.注册虚引用的类名

d.注册Finalizer的类名(GC: 从一个对象变得不可达开始,到执行它的finalizer方法,时间可能任意长)

f.注册FinalizerReference的类名(class类里面定义finalize方法,就会创建)

     B)FINALIZER_WATCHDOG_DAEMON:

a.注册FinalizerWatchdogDaemon线程名称(回收的线程)

     C)MAIN

a.注册主线程名称

     D)LEAK_CANARY_THREAD

a.注册LeakCanary的工作线程名称

     E)EVENT_RECEIVER__MMESSAGE_QUEUE

a.注册android.view.Choreographer$FrameDisplayEventReceiver以及mMessageQueue;应该是需要继承修改;后续在看

     F)剩下的其他和机型;Api相关。是针对某一个Api遇到内存泄露作出的指定捕获,或者刨除;这边也是后续抽一个例子细看

这个类使用的是 EnumSet.allOf 该方法接受一个元素类型的参数elementType,并引用其元素将存储到集合中的类对象;

   5)buildAndInstall()方法

     调用这个方法的时候;判断是否是初始化默认的DISABLED;这个位子后续说;这边不是;所以走下面的代码;

 public RefWatcher buildAndInstall() {
    RefWatcher refWatcher = build();
    if (refWatcher != DISABLED) {
      LeakCanary.enableDisplayLeakActivity(context);
      ActivityRefWatcher.installOnIcsPlus((Application) context, refWatcher);
    }
    return refWatcher;
  }

走到enableDisplayLeakActivity方法;

 public static void enableDisplayLeakActivity(Context context) {
    setEnabled(context, DisplayLeakActivity.class, true);
  }

里面开启类一个单核心线程

public static void setEnabled(Context context, final Class componentClass,
      final boolean enabled) {
    final Context appContext = context.getApplicationContext();
    executeOnFileIoThread(new Runnable() {
      @Override public void run() {
        setEnabledBlocking(appContext, componentClass, enabled);
      }
    });
  }

来处理setEnabledBlocking方法;

 public static void setEnabledBlocking(Context appContext, Class componentClass,
      boolean enabled) {
    ComponentName component = new ComponentName(appContext, componentClass);
    PackageManager packageManager = appContext.getPackageManager();
    int newState = enabled ? COMPONENT_ENABLED_STATE_ENABLED : COMPONENT_ENABLED_STATE_DISABLED;
    // Blocks on IPC.
    packageManager.setComponentEnabledSetting(component, newState, DONT_KILL_APP);
  }

其中packageManager.setComponentEnabledSetting(component, newState, DONT_KILL_APP);来控制启用 禁用 四大组件

由上面代码里面 对DisplayLeakActivity进行设置成----可用状态,并且不杀死APP(明显是在处理Activity的

下面在走 installOnIcsPlus 方法;

其中SDK低于14的不进行初始化观察;

  public static void installOnIcsPlus(Application application, RefWatcher refWatcher) {
    if (SDK_INT < ICE_CREAM_SANDWICH) {
      // If you need to support Android < ICS, override onDestroy() in your base activity.
      return;
    }
    ActivityRefWatcher activityRefWatcher = new ActivityRefWatcher(application, refWatcher);
    activityRefWatcher.watchActivities();
  }

其中使用Application进行注册Activity生命周期,所以Fragment的泄露希望是自己去调用

  private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
      new Application.ActivityLifecycleCallbacks() {
        @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
        }

        @Override public void onActivityStarted(Activity activity) {
        }

        @Override public void onActivityResumed(Activity activity) {
        }

        @Override public void onActivityPaused(Activity activity) {
        }

        @Override public void onActivityStopped(Activity activity) {
        }

        @Override public void onActivitySaveInstanceState(Activity activity, Bundle outState) {
        }

        @Override public void onActivityDestroyed(Activity activity) {
          ActivityRefWatcher.this.onActivityDestroyed(activity);
        }
      };

在里面执行了onActivityDestroyed方法;

     刚刚在上面没有提到buildAndInstall方法里面的build;现在我们回过来讲一下;因为我们现在已经知道了,这个LeakCanary触发的时机;

 public final RefWatcher build() {
    if (isDisabled()) {
      return RefWatcher.DISABLED;
    }
    //1
    ExcludedRefs excludedRefs = this.excludedRefs;
    if (excludedRefs == null) {
      excludedRefs = defaultExcludedRefs();
    }
    //2
    HeapDump.Listener heapDumpListener = this.heapDumpListener;
    if (heapDumpListener == null) {
      heapDumpListener = defaultHeapDumpListener();
    }
    //3
    DebuggerControl debuggerControl = this.debuggerControl;
    if (debuggerControl == null) {
      debuggerControl = defaultDebuggerControl();
    }
    //4
    HeapDumper heapDumper = this.heapDumper;
    if (heapDumper == null) {
      heapDumper = defaultHeapDumper();
    }
    // 5
    WatchExecutor watchExecutor = this.watchExecutor;
    if (watchExecutor == null) {
      watchExecutor = defaultWatchExecutor();
    }
    // 6
    GcTrigger gcTrigger = this.gcTrigger;
    if (gcTrigger == null) {
      gcTrigger = defaultGcTrigger();
    }

    return new RefWatcher(watchExecutor, debuggerControl, gcTrigger, heapDumper, heapDumpListener,
        excludedRefs);
  }

   我们先看到 :

   1 是ExcludedRefs对象的赋值;从uml图里面可以看到子类AndroidRefWatcherBuilder和父类RefWatcherBuilder;在初始化的时候调用的就是对父类this.excludedRefs赋值;

   2是AndroidRefWatcherBuilder子类里面调用父类的heapDumpListener方法赋值this.heapDumpListener

   3是AndroidRefWatcherBuilder类里面重写子类的defaultDebuggerControl方法,里面获取是否是被调试状态:Debug.isDebuggerConnected()

  4 是AndroidRefWatcherBuilder类里面重写子类的defaultHeapDumper方法 (下面细讲)

  5 是AndroidRefWatcherBuilder类里面重写子类的defaultWatchExecutor方法,初始化AndroidWatchExecutor延迟5000毫秒

(专门开了一个工作线程处理)

  6 是AndroidRefWatcherBuilder类里面 使用默认的GcTrigger(做GC操作的)

然后组装到RefWatcher里面去;下面我们开始讲解一下整个工作的流程;以及重点的实现部分

现在开走;实现的内存泄露检测流程

当Activity涉及到destory时

  void onActivityDestroyed(Activity activity) {
    refWatcher.watch(activity);
  }

调用watch方法

  public void watch(Object watchedReference, String referenceName) {
    if (this == DISABLED) {
      return;
    }
    checkNotNull(watchedReference, "watchedReference");//校验不为null
    checkNotNull(referenceName, "referenceName");//校验不为null
    final long watchStartNanoTime = System.nanoTime();//纳秒
    String key = UUID.randomUUID().toString();//唯一标识码
    retainedKeys.add(key);//缓存起来
    final KeyedWeakReference reference =
        new KeyedWeakReference(watchedReference, key, referenceName, queue);//生成weak;配置一个key和name(name看起来是空值),加到队列里面去,继承WeakReference

    ensureGoneAsync(watchStartNanoTime, reference);//实现runable的方法;
  }

  private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
    watchExecutor.execute(new Retryable() {//watchExecutor上面说的设置一个工作线程;
      //判断是否是主线程; 如果是的话,直接addIdleHandler(CPU空闲的时候会调用)然后执行run();(有重试机制)都是延时操作
      // 如果不是主线程,先post回主线程,addIdleHandler(CPU空闲的时候会调用)然后执行run();(有重试机制)都是延时操作

      @Override public Retryable.Result run() {
        return ensureGone(reference, watchStartNanoTime);//RETRY会进行重试
      }
    });
  }

  Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
    long gcStartNanoTime = System.nanoTime();//获取纳秒
    long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);//计算出来耗时多久

    removeWeaklyReachableReferences();//移除队列里面的值,以及对应的retainedKeys的name 重要1

    if (debuggerControl.isDebuggerAttached()) {//判断是否在调试,如果是调试的返回重试
      // The debugger can create false leaks.
      return RETRY;
    }
    if (gone(reference)) {//如果retainedKeys没有缓存的reference的话,不做操作
      return DONE;
    }
    gcTrigger.runGc();//表示有reference,进行GC操作  重要2
    //Runtime.getRuntime().gc(); 发起GC操作
    //Thread.sleep(100);//等待 100毫秒
    //System.runFinalization();//运行处于挂起终止状态的所有对象的终止方法。
    //调用该方法说明 Java 虚拟机做了一些努力运行已被丢弃对象的 finalize 方法,但是这些对象的 finalize 方法至今尚未运行。当控制权从方法调用中返回时,Java 虚拟机已经尽最大努力去完成所有未执行的终止方法

    removeWeaklyReachableReferences();//移除队列里面的值,以及对应的retainedKeys的name
    if (!gone(reference)) {//如果这个时候,队列里面的reference被移除了,但是retainedKeys还是包含reference,进行下一步内存泄露分析,如果没有表示被回收了;重要 3
      long startDumpHeap = System.nanoTime();//再来一个纳秒
      long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);//计算耗时

      File heapDumpFile = heapDumper.dumpHeap();//生成heap dump文件,并且保存起来;看 AndroidHeapDumper类 重要4
      if (heapDumpFile == RETRY_LATER) {//如果是重试,进行重试操作
        // Could not dump the heap.
        return RETRY;
      }
      long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);//计算耗时
      heapdumpListener.analyze(
          new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
              gcDurationMs, heapDumpDurationMs));//开始分析,看ServiceHeapDumpListener 类 ->HeapAnalyzerService类 重要5
    }
    return DONE;
  }

重点说明:(这个操作是线程空余状态进行)

重点1:

清空不存在的误差

重点2:

进行GC的操作,并且还是延迟了

重点3:

是利用缓存,以及队列的删除进行判断是否存在内存泄漏

重点4:

AndroidHeapDumper类:

 @Override public File dumpHeap() {
    File heapDumpFile = leakDirectoryProvider.newHeapDumpFile();//生成路径
    // 看下面的DefaultLeakDirectoryProvider类newHeapDumpFile();生成路径不多说明

    if (heapDumpFile == RETRY_LATER) {//如果稍后在进行重试;会返回一个标识
      return RETRY_LATER;
    }

    FutureResult waitingForToast = new FutureResult<>();
    showToast(waitingForToast);//先进行弹框出现内存泄露标志,这个也是cpu空闲时,缓存该toast

    if (!waitingForToast.wait(5, SECONDS)) {//并发
      CanaryLog.d("Did not dump heap, too much time waiting for Toast.");
      return RETRY_LATER;
    }

    Toast toast = waitingForToast.get();//获取toat
    try {
      Debug.dumpHprofData(heapDumpFile.getAbsolutePath());//Debug.dumpHprofData 生成heap dump文件,后面是路径;//目标找到了,这个是生成文件
      cancelToast(toast);//取消弹窗
      return heapDumpFile;//返回写入的路径
    } catch (Exception e) {
      CanaryLog.d(e, "Could not dump heap");
      // Abort heap dump
      return RETRY_LATER;//失败了重试
    }
  }

里面生成了真正的dump的对象,以及解析的类

重点5:

ServiceHeapDumpListener 类 ->HeapAnalyzerService类

  @Override protected void onHandleIntent(Intent intent) {
    if (intent == null) {
      CanaryLog.d("HeapAnalyzerService received a null intent, ignoring.");
      return;
    }
    String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA);
    HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA);

    HeapAnalyzer heapAnalyzer = new HeapAnalyzer(heapDump.excludedRefs);//输入信息类

    AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey);//TODO 1 检测内存泄漏,以及生成result
    AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);
    //TODO 2 DisplayLeakService 也是一样开启一个IntentService处理 onHeapAnalyzed方法里面
  }

这个类操作之后,到DisplayLeakService 这个进行最后的数据小处理,以及弹通知操作

下面细讲一下TODO:

TODO 1:

HeapAnalyzer类:这个是我们非常关键的类。因为会涉及到我们判断哪一些不需要写入;不需要生成泄漏文件;所以上面的配置类很重要

  public AnalysisResult checkForLeak(File heapDumpFile, String referenceKey) {//确定一下是否是内存泄露
    long analysisStartNanoTime = System.nanoTime();//纳秒

    if (!heapDumpFile.exists()) {//判断文件是否存在;不存在的话,进行返回失败操作
      Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);
      return failure(exception, since(analysisStartNanoTime));
    }

    try {
      HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);//MemoryMappedFileBuffer 将heapDumpFile传入,生成HprofBuffer,这个到haha的那个库,后续分析
      HprofParser parser = new HprofParser(buffer);//转码,也是haha
      Snapshot snapshot = parser.parse();//这几个转化后续在看,上面就是将文件转化成可以识别的对象
      deduplicateGcRoots(snapshot);//生成GC root快照

      Instance leakingRef = findLeakingReference(referenceKey, snapshot);//这边开始查找泄漏Instance

      // False alarm, weak reference was cleared in between key check and heap dump.
      if (leakingRef == null) {//如果没找到,表示没有内存泄漏
        return noLeak(since(analysisStartNanoTime));
      }

      return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef);//有的话,开始继续查找
    } catch (Throwable e) {
      return failure(e, since(analysisStartNanoTime));
    }
  }

  /**
   * Pruning duplicates reduces memory pressure from hprof bloat added in Marshmallow.
   */
  void deduplicateGcRoots(Snapshot snapshot) {
    // THashMap has a smaller memory footprint than HashMap.
    final THashMap uniqueRootMap = new THashMap<>();

    final List gcRoots = (ArrayList) snapshot.getGCRoots();//获取根的gc root(可达性分析法)
    for (RootObj root : gcRoots) {//开始遍历
      String key = generateRootKey(root);//转化成字符串
      if (!uniqueRootMap.containsKey(key)) {//排重操作,如果没有的话,就加进去
        uniqueRootMap.put(key, root);
      }
    }

    // Repopulate snapshot with unique GC roots.
    gcRoots.clear();//清空
    uniqueRootMap.forEach(new TObjectProcedure() {//haha里面的,这边应该是转化成字符串之类的,方便后续识别
      @Override public boolean execute(String key) {
        return gcRoots.add(uniqueRootMap.get(key));
      }
    });
  }

  private String generateRootKey(RootObj root) {
    return String.format("%s@0x%08x", root.getRootType().getName(), root.getId());
  }

  private Instance findLeakingReference(String key, Snapshot snapshot) {//返回找到的referenceKey的KeyedWeakReference泄漏
    ClassObj refClass = snapshot.findClass(KeyedWeakReference.class.getName());//看是否包含 KeyedWeakReference这个对象名字(弱引用);对象无法被销毁导致的
    List keysFound = new ArrayList<>();
    for (Instance instance : refClass.getInstancesList()) {//haha里面,进行遍历
      List values = classInstanceValues(instance);//获取 List
      String keyCandidate = asString(fieldValue(values, "key"));
      if (keyCandidate.equals(key)) {//看一下是否包含该key名称的,即referenceKey,有的话就是找到了该泄漏的
        return fieldValue(values, "referent");
      }
      keysFound.add(keyCandidate);
    }
    throw new IllegalStateException(
        "Could not find weak reference with key " + key + " in " + keysFound);
  }

  private AnalysisResult findLeakTrace(long analysisStartNanoTime, Snapshot snapshot,
      Instance leakingRef) {

    ShortestPathFinder pathFinder = new ShortestPathFinder(excludedRefs);//之前的配置类;
    ShortestPathFinder.Result result = pathFinder.findPath(snapshot, leakingRef);//ShortestPathFinder类

    // False alarm, no strong reference path to GC Roots.
    if (result.leakingNode == null) {
      return noLeak(since(analysisStartNanoTime));
    }

    LeakTrace leakTrace = buildLeakTrace(result.leakingNode);

    String className = leakingRef.getClassObj().getClassName();

    // Side effect: computes retained size.
    snapshot.computeDominators();

    Instance leakingInstance = result.leakingNode.instance;

    long retainedSize = leakingInstance.getTotalRetainedSize();

    retainedSize += computeIgnoredBitmapRetainedSize(snapshot, leakingInstance);

    return leakDetected(result.excludingKnownLeaks, className, leakTrace, retainedSize,
        since(analysisStartNanoTime));
  }

TODO 2:

DisplayLeakService类,进行发送通知

  @Override protected final void onHeapAnalyzed(HeapDump heapDump, AnalysisResult result) {
    String leakInfo = leakInfo(this, heapDump, result, true);
    CanaryLog.d(leakInfo);

    boolean resultSaved = false;
    boolean shouldSaveResult = result.leakFound || result.failure != null;
    if (shouldSaveResult) {
      heapDump = renameHeapdump(heapDump);//生成heapDump
      resultSaved = saveResult(heapDump, result);//保存起来。这个会让另一个页面去找到该路径
    }

    PendingIntent pendingIntent;
    String contentTitle;
    String contentText;

    if (!shouldSaveResult) {
      contentTitle = getString(R.string.leak_canary_no_leak_title);
      contentText = getString(R.string.leak_canary_no_leak_text);
      pendingIntent = null;
    } else if (resultSaved) {
      pendingIntent = DisplayLeakActivity.createPendingIntent(this, heapDump.referenceKey);

      if (result.failure == null) {
        String size = formatShortFileSize(this, result.retainedHeapSize);
        String className = classSimpleName(result.className);
        if (result.excludedLeak) {
          contentTitle = getString(R.string.leak_canary_leak_excluded, className, size);
        } else {
          contentTitle = getString(R.string.leak_canary_class_has_leaked, className, size);
        }
      } else {
        contentTitle = getString(R.string.leak_canary_analysis_failed);
      }
      contentText = getString(R.string.leak_canary_notification_message);
    } else {
      contentTitle = getString(R.string.leak_canary_could_not_save_title);
      contentText = getString(R.string.leak_canary_could_not_save_text);
      pendingIntent = null;
    }
    // New notification id every second.
    int notificationId = (int) (SystemClock.uptimeMillis() / 1000);
    showNotification(this, contentTitle, contentText, pendingIntent, notificationId);//发送Notification通知
    afterDefaultHandling(heapDump, result, leakInfo);
  }

以上是我们使用LeakCanary的基本操作流程;所以这些是我需要了解;后续我们再去分析haha这个库

你可能感兴趣的:(android,安卓,android)